93 research outputs found

    Synthetic soil crusts against green-desert transitions : a spatial model

    Get PDF
    Altres ajuts: Botin Foundation (Banco Santander through its Santander Universities Global Division) i CERCA Programme/Generalitat de CatalunyaSemiarid ecosystems are threatened by global warming due to longer dehydration times and increasing soil degradation. Mounting evidence indicates that, given the current trends, drylands are likely to expand and possibly experience catastrophic shifts from vegetated to desert states. Here, we explore a recent suggestion based on the concept of ecosystem terraformation, where a synthetic organism is used to counterbalance some of the nonlinear effects causing the presence of such tipping points. Using an explicit spatial model incorporating facilitation and considering a simplification of states found in semiarid ecosystems including vegetation, fertile and desert soil, we investigate how engineered microorganisms can shape the fate of these ecosystems. Specifically, two different, but complementary, terraformation strategies are proposed: Cooperation -based: C -terraformation; and Dispersion -based: D -terraformation. The first strategy involves the use of soil synthetic microorganisms to introduce cooperative loops (facilitation) with the vegetation. The second one involves the introduction of engineered microorganisms improving their dispersal capacity, thus facilitating the transition from desert to fertile soil. We show that small modifications enhancing cooperative loops can effectively modify the aridity level of the critical transition found at increasing soil degradation rates, also identifying a stronger protection against soil degradation by using the D -terraformation strategy. The same results are found in a mean-field model providing insights into the transitions and dynamics tied to these terraformation strategies. The potential consequences and extensions of these models are discussed

    Projections of global and UK bioenergy potential from Miscanthus x giganteus – feedstock yield, carbon cycling and electricity generation in the 21st century

    Get PDF
    Funding Information Natural Environment Research Council. Grant Numbers:NE/M019691/1, NE/P019951/1 Engineering and Physical Sciences Research CouncilPeer reviewedPublisher PD

    Remotely sensed albedo allows the identification of two ecosystem states along aridity gradients in Africa

    Get PDF
    Empirical verification of multiple states in drylands is scarce, impeding the design of indicators to anticipate the onset of desertification. Remote sensing‐derived indicators of ecosystem states are gaining new ground due to the possibilities they bring to be applied inexpensively over large areas. Remotely sensed albedo has been often used to monitor drylands due to its close relationship with ecosystem status and climate. Here, we used a space‐for‐time‐substitution approach to evaluate whether albedo (averaged from 2000 to 2016) can identify multiple ecosystem states in African drylands spanning from the Saharan desert to tropical Africa. By using latent class analysis, we found that albedo showed two states (low and high; the cut‐off level was 0.22 at the shortwave band). Potential analysis revealed that albedo exhibited an abrupt and discontinuous increase with increased aridity (1 − [precipitation/potential evapotranspiration]). The two albedo states co‐occurred along aridity values ranging from 0.72 to 0.78, during which vegetation cover exhibited a rapid, continuous decrease from ~90% to ~50%. At aridity values of 0.75, the low albedo state started to exhibit less attraction than the high albedo state. Low albedo areas beyond this aridity value were considered as vulnerable regions where abrupt shifts in albedo may occur if aridity increases, as forecasted by current climate change models. Our findings indicate that remotely sensed albedo can identify two ecosystem states in African drylands. They support the suitability of albedo indices to inform us about discontinuous responses to aridity experienced by drylands, which can be linked to the onset of land degradation.This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA19030500), the National Key Research and Development Program of China (Grant 2016YFC0503302), the European Research Council (BIODESERT project, ERC Grant Agreement 647038), the Joint PhD, Training Program of the University of Chinese Academy of Sciences, and the Research Foundation of Henan University of Technology (Grant 31401178)

    Prenatal treprostinil improves pulmonary arteriolar hypermuscularization in the rabbit model of congenital diaphragmatic hernia

    Get PDF
    Congenital diaphragmatic hernia (CDH) is a congenital malformation characterized by pulmonary hypoplasia, pulmonary hypertension, and cardiac dysfunction. Pulmonary hypertension represents the major cause of neonatal mortality and morbidity. Prenatal diagnosis allows assessment of severity and selection of foetal surgery candidates. We have shown that treprostinil, a prostacyclin analogue with an anti-remodelling effect, attenuates the relative hypermuscularization of the pulmonary vasculature in rats with nitrofen-induced CDH. Here we confirm these observations in a large animal model of surgically-created CDH. In the rabbit model, subcutaneous maternal administration of treprostinil at 150 ng/kg/min consistently reached target foetal concentrations without demonstrable detrimental foetal or maternal adverse effects. In pups with CDH, prenatal treprostinil reduced pulmonary arteriolar proportional medial wall thickness and downregulated inflammation and myogenesis pathways. No effect on alveolar morphometry or lung mechanics was observed. These findings provide further support towards clinical translation of prenatal treprostinil for CDH.</p

    Contrasting mechanisms underlie short‐ and longer‐term soil respiration responses to experimental warming in a dryland ecosystem

    Get PDF
    Soil carbon losses to the atmosphere through soil respiration are expected to rise with ongoing temperature increases, but available evidence from mesic biomes suggests that such response disappears after a few years of experimental warming. However, there is lack of empirical basis for these temporal dynamics in soil respiration responses, and for the mechanisms underlying them, in drylands, which collectively form the largest biome on Earth and store 32% of the global soil organic carbon pool. We coupled data from a 10 year warming experiment in a biocrust‐dominated dryland ecosystem with laboratory incubations to confront 0–2 years (short‐term hereafter) versus 8–10 years (longer‐term hereafter) soil respiration responses to warming. Our results showed that increased soil respiration rates with short‐term warming observed in areas with high biocrust cover returned to control levels in the longer‐term. Warming‐induced increases in soil temperature were the main drivers of the short‐term soil respiration responses, whereas longer‐term soil respiration responses to warming were primarily driven by thermal acclimation and warming‐induced reductions in biocrust cover. Our results highlight the importance of evaluating short‐ and longer‐term soil respiration responses to warming as a mean to reduce the uncertainty in predicting the soil carbon–climate feedback in drylands.This research was funded by the European Research Council (ERC Grant agreements 242658 [BIOCOM] and 647038 [BIODESERT]). M.D. is supported by an FPU fellowship from the Spanish Ministry of Education, Culture and Sports (FPU-15/00392). P.G.-P. is supported by a Ramón y Cajal grant from the Spanish Ministry of Science and Innovation (RYC2018-024766-I). S.A. acknowledges the Spanish MINECO for financial support via the DIGGING_DEEPER project through the 2015–2016 BiodivERsA3/FACCE-JPI joint call for research proposals. F.T.M. and S.A. acknowledge support from the Generalitat Valenciana (CIDEGENT/2018/041). C.C.-D. acknowledges support from the European Research Council (ERC Grant 647038 [BIODESERT])

    ‘Capacity for what? Capacity for whom?’ A decolonial deconstruction of research capacity development practices in the Global South and a proposal for a value-centred approach

    Get PDF
    Whilst North to South knowledge transfer patterns have been extensively problematised by Southern and decolonial perspectives, there is very little reflection on the practice of research capacity development (RCD), still strongly focused on technoscientific solutionism, yet largely uncritical of its underlying normative directions and power asymmetries. Without making transparent these normative and epistemological dimensions, RCD practices will continue to perpetuate approaches that are likely to be narrow, technocratic and unreflexive of colonial legacies, thus failing to achieve the aims of RCD, namely, the equitable and development-oriented production of knowledge in low- and middle-income societies. Informed by the authors’ direct experience of RCD approaches and combining insights from decolonial works and other perspectives from the margins with Science and Technology Studies, the paper undertakes a normative and epistemological deconstruction of RCD mainstream practice. Highlighting asymmetries of power and material resources in knowledge production, the paper’s decolonial lens seeks to aid the planning, implementation and evaluation of RCD interventions. Principles of cognitive justice and epistemic pluralism, accessibility enabled by systems thinking and sustainability grounded on localisation are suggested as the building blocks for more reflexive and equitable policies that promote research capacity for the purpose of creating social value and not solely for the sake of perpetuating technoscience
    corecore