39 research outputs found

    Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves

    Get PDF
    Presumptive dendritic cells (DCs) bearing the CD11c integrin and other markers have previously been identified in normal mouse and human aorta. We used CD11c promoter-enhanced yellow fluorescent protein (EYFP) transgenic mice to visualize aortic DCs and study their antigen-presenting capacity. Stellate EYFP + cells were readily identified in the aorta and could be double labeled with antibodies to CD11c and antigen-presenting major histo-compatability complex (MHC) II products. The DCs proved to be particularly abundant in the cardiac valves and aortic sinus. In all aortic locations, the CD11c + cells localized to the subintimal space with occasional processes probing the vascular lumen. Aortic DCs expressed little CD40 but expressed low levels of CD1d, CD80, and CD86. In studies of antigen presentation, DCs selected on the basis of EYFP expression or binding of anti-CD11c antibody were as effective as DCs similarly elected from the spleen. In particular, the aortic DCs could cross-present two different protein antigens on MHC class I to CD8 + TCR transgenic T cells. In addition, after intravenous injection, aortic DCs could capture anti-CD11c antibody and cross-present ovalbumin to T cells. These results indicate that bona fide DCs are a constituent of the normal aorta and cardiac valves

    Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209 + dendritic cells for immune T cell areas

    Get PDF
    Dendritic cells (DCs), critical antigen-presenting cells for immune control, normally derive from bone marrow precursors distinct from monocytes. It is not yet established if the large reservoir of monocytes can develop into cells with critical features of DCs in vivo. We now show that fully differentiated monocyte-derived DCs (Mo-DCs) develop in mice and DC-SIGN/CD209a marks the cells. Mo-DCs are recruited from blood monocytes into lymph nodes by lipopolysaccharide and live or dead gram-negative bacteria. Mobilization requires TLR4 and its CD14 coreceptor and Trif. When tested for antigen-presenting function, Mo-DCs are as active as classical DCs, including cross-presentation of proteins and live gram-negative bacteria on MHC I in vivo. Fully differentiated Mo-DCs acquire DC morphology and localize to T cell areas via L-selectin and CCR7. Thus the blood monocyte reservoir becomes the dominant presenting cell in response to select microbes, yielding DC-SIGN + cells with critical functions of DCs

    Flt3 signaling-dependent dendritic cells protect against atherosclerosis

    Get PDF
    Early events in atherosclerosis occur in the aortic intima and involve monocytes that become macrophages. We looked for these cells in the steady state adult mouse aorta, and surprisingly, we found a dominance of dendritic cells (DCs) in the intima. In contrast to aortic adventitial macrophages, CD11c +MHC II hi DCs were poorly phagocytic but were immune stimulatory. DCs were of two types primarily: classical Flt3-Flt3L signaling-dependent, CD103 +CD11b - DCs and macrophage-colony stimulating factor (M-CSF)-dependent, CD14 +CD11b +DC-SIGN + monocyte-derived DCs. Both types expanded during atherosclerosis. By crossing Flt3 -/- to Ldlr -/- atherosclerosis-prone mice, we developed a selective and marked deficiency of classical CD103 + aortic DCs, and they were associated with exacerbated atherosclerosis without alterations in blood lipids. Concomitantly, the Flt3 -/-Ldlr -/- mice had fewer Foxp3 + Treg cells and increased inflammatory cytokine mRNAs in the aorta. Therefore, functional DCs are dominant in normal aortic intima and, in contrast to macrophages, CD103 + classical DCs are associated with atherosclerosis protection

    Flt3L-Mediated expansion of plasmacytoid dendritic cells suppresses HIV infection in humanized mice

    Get PDF
    Plasmacytoid dendritic cells (plasmacytoid DC, pDC) are major IFN-I producers and have been shown to be affected by HIV through ill-defined mechanisms. In this study, we directly assess the role of pDC in early infection, evaluating whether modulating their abundance can alter viral replication. First, HIV infection of humanized mice induces systemic depletion of pDC, and in the presence of soluble FMS-like tyrosine kinase 3 ligand (Flt3L), pDC levels remain elevated. Flt3L significantly delays the onset of viremia and reduces viral replication via a process that is dependent on pDC and mediated through an enhanced early IFN-I response. pDC from Flt3L-treated mice are more prone to express IFN-a following TLR7 stimulation, but this propensity is gradually decreased during infection. In conclusion, maintaining pDC levels and function is key to effective early viral control, and in this context, these findings provide practical insights for anti-HIV strategies and vaccine design

    Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract

    Get PDF
    Developing efficacious vaccines against enteric diseases is a global challenge that requires a better understanding of cellular recruitment dynamics at the mucosal surfaces. The current paradigm of T cell homing to the gastrointestinal (GI) tract involves the induction of alpha 4 beta 7 and CCR9 by Peyer's patch and mesenteric lymph node (MLN) dendritic cells (DCs) in a retinoic acid-dependent manner. This paradigm, however, cannot be reconciled with reports of GI T cell responses after intranasal (i.n.) delivery of antigens that do not directly target the GI lymphoid tissue. To explore alternative pathways of cellular migration, we have investigated the ability of DCs from mucosal and nonmucosal tissues to recruit lymphocytes to the GI tract. Unexpectedly, we found that lung DCs, like CD103(+) MLN DCs, up-regulate the gut-homing integrin alpha 4 beta 7 in vitro and in vivo, and induce T cell migration to the GI tract in vivo. Consistent with a role for this pathway in generating mucosal immune responses, lung DC targeting by i.n. immunization induced protective immunity against enteric challenge with a highly pathogenic strain of Salmonella. The present report demonstrates novel functional evidence of mucosal cross talk mediated by DCs, which has the potential to inform the design of novel vaccines against mucosal pathogens.open8

    Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination

    Get PDF
    Yersinia pestis is a Gram-negative bacterium that causes plague. After Y. pestis overcomes the skin barrier, it encounters antigen-presenting cells (APCs), such as Langerhans and dendritic cells. They transport the bacteria from the skin to the lymph nodes. However, the molecular mechanisms involved in bacterial transmission are unclear. Langerhans cells (LCs) express Langerin (CD207), a calcium-dependent (C-type) lectin. Furthermore, Y. pestis possesses exposed core oligosaccharides. In this study, we show that Y. pestis invades LCs and Langerin-expressing transfectants. However, when the bacterial core oligosaccharides are shielded or truncated, Y. pestis propensity to invade Langerhans and Langerin-expressing cells decreases. Moreover, the interaction of Y. pestis with Langerin-expressing transfectants is inhibited by purified Langerin, a DC-SIGN (DC-specific intercellular adhesion molecule 3 grabbing nonintegrin)-like molecule, an anti-CD207 antibody, purified core oligosaccharides and several oligosaccharides. Furthermore, covering core oligosaccharides reduces the mortality associated with murine infection by adversely affecting the transmission of Y. pestis to lymph nodes. These results demonstrate that direct interaction of core oligosaccharides with Langerin facilitates the invasion of LCs by Y. pestis. Therefore, Langerin-mediated binding of Y. pestis to APCs may promote its dissemination and infection.Peer reviewe

    Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves

    Get PDF
    Presumptive dendritic cells (DCs) bearing the CD11c integrin and other markers have previously been identified in normal mouse and human aorta. We used CD11c promoter–enhanced yellow fluorescent protein (EYFP) transgenic mice to visualize aortic DCs and study their antigen-presenting capacity. Stellate EYFP+ cells were readily identified in the aorta and could be double labeled with antibodies to CD11c and antigen-presenting major histocompatability complex (MHC) II products. The DCs proved to be particularly abundant in the cardiac valves and aortic sinus. In all aortic locations, the CD11c+ cells localized to the subintimal space with occasional processes probing the vascular lumen. Aortic DCs expressed little CD40 but expressed low levels of CD1d, CD80, and CD86. In studies of antigen presentation, DCs selected on the basis of EYFP expression or binding of anti-CD11c antibody were as effective as DCs similarly selected from the spleen. In particular, the aortic DCs could cross-present two different protein antigens on MHC class I to CD8+ TCR transgenic T cells. In addition, after intravenous injection, aortic DCs could capture anti-CD11c antibody and cross-present ovalbumin to T cells. These results indicate that bona fide DCs are a constituent of the normal aorta and cardiac valves

    Fast Contour-Tracing Algorithm Based on a Pixel-Following Method for Image Sensors

    No full text
    Contour pixels distinguish objects from the background. Tracing and extracting contour pixels are widely used for smart/wearable image sensor devices, because these are simple and useful for detecting objects. In this paper, we present a novel contour-tracing algorithm for fast and accurate contour following. The proposed algorithm classifies the type of contour pixel, based on its local pattern. Then, it traces the next contour using the previous pixel’s type. Therefore, it can classify the type of contour pixels as a straight line, inner corner, outer corner and inner-outer corner, and it can extract pixels of a specific contour type. Moreover, it can trace contour pixels rapidly because it can determine the local minimal path using the contour case. In addition, the proposed algorithm is capable of the compressing data of contour pixels using the representative points and inner-outer corner points, and it can accurately restore the contour image from the data. To compare the performance of the proposed algorithm to that of conventional techniques, we measure their processing time and accuracy. In the experimental results, the proposed algorithm shows better performance compared to the others. Furthermore, it can provide the compressed data of contour pixels and restore them accurately, including the inner-outer corner, which cannot be restored using conventional algorithms
    corecore