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SUMMARY

Dendritic cells (DCs), critical antigen-presenting cells
for immune control, normally derive from bone
marrow precursors distinct from monocytes. It is
not yet established if the large reservoir of mono-
cytes can develop into cells with critical features of
DCs in vivo. We now show that fully differentiated
monocyte-derived DCs (Mo-DCs) develop in mice
and DC-SIGN/CD209a marks the cells. Mo-DCs are
recruited from blood monocytes into lymph nodes
by lipopolysaccharide and live or dead gram-nega-
tive bacteria. Mobilization requires TLR4 and its
CD14 coreceptor and Trif. When tested for antigen-
presenting function, Mo-DCs are as active as clas-
sical DCs, including cross-presentation of proteins
and live gram-negative bacteria on MHC I in vivo.
Fully differentiated Mo-DCs acquire DC morphology
and localize to T cell areas via L-selectin and CCR7.
Thus the blood monocyte reservoir becomes the
dominant presenting cell in response to select
microbes, yielding DC-SIGN+ cells with critical func-
tions of DCs.

INTRODUCTION

Recent advances have clarified the origin of dendritic cells (DCs),

a hematopoietic lineage specialized to present antigens and

both initiate and control immunity (Heath and Carbone, 2009;

Melief, 2008). In the bone marrow, a common monocyte-DC

precursor (Fogg et al., 2006) gives rise to monocytes and other

precursors termed common DC precursors (Naik et al., 2007;

Onai et al., 2007) and pre-cDCs (Liu et al., 2009). The latter

express intermediate levels of CD11c integrin and begin to

synthesize MHC II products. Pre-cDCs move into the blood to

seed both lymphoid and nonlymphoid tissues forming CD11chi,

MHC IIhi DCs (Liu et al., 2009; Ginhoux et al., 2009). DCs in the

steady state are dependent upon the hematopoietin, Flt3-L

(D’Amico and Wu, 2003), whereas monocytes require macro-

phage colony-stimulating factor (M-CSF) (Geissmann et al.,

2010). Flt3-L�/� mice have a severe deficit of DCs (Naik et al.,

2007; Onai et al., 2007; Liu et al., 2009; Waskow et al., 2008),

whereasmonocytes aremissing in mice lackingM-CSF receptor

(c-fms or CD115) (Heard et al., 1987; Ginhoux et al., 2006). Thus,

most DCs in the steady state are independent of monocytes.

Nevertheless, monocytes also can differentiate into DCs.

Although first studied as macrophage precursors, mainly in vitro

(de Villiers et al., 1994; Johnson et al., 1977), monocytes were

later recognized to have an added potential to develop into

DCs (monocyte-derived DCs [Mo-DCs]). This too has been

studied primarily in cultures of human blood monocytes (Romani

et al., 1994; Sallusto and Lanzavecchia, 1994). Monocytes, upon

culture for several days in GM-CSF and IL-4, acquire a typical

probing or dendritic morphology, lose the capacity to phagocy-

tose, and adhere to various tissue culture surfaces but acquire

strong capacities to initiate immunity. Mo-DCs can immunize

humans (Dhodapkar et al., 1999; Schuler-Thurner et al., 2000)

and home to the T cell areas of lymph nodes (LNs) (De Vries

et al., 2003). Monocytes are �20 times more abundant than

DCs in blood and marrow, so the mobilization of this monocyte

reservoir in vivo to generate potent antigen-presenting DCs

needs to be elucidated.

Several reports have begun to document in mice the differen-

tiation of CD11c� and MHC II� blood monocytes into large

numbers of CD11c+ MHC II+ Mo-DCs during different models,

e.g., Leishmania major infection via the skin (Leon et al., 2007),

intravenous infection with Listeria monocytogenes (Serbina

et al., 2003), influenza virus infection via the airway (Nakano

et al., 2009), Aspergillus fumigatus in the lung (Hohl et al.,

2009), T cell-mediated colitis (Siddiqui et al., 2010), and injection
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of the adjuvant, alum (Kool et al., 2008). These Mo-DCs pre-

sented protein antigens to TCR transgenic CD4+ T cells and

are distinguished from classical DCs by expression of the Gr-

1/Ly6C monocyte markers. However, many classical functional

features of DCs have not been assessed, including a peculiar

probing morphology, localization to T cell areas of lymphoid

organs in a position to find and activate rare clones of specific

T cells, and efficient antigen capture and processing.

The latter includes the capacity for cross-presentation. This is

the processing of captured proteins ontoMHC I without the need

for synthesis in antigen-presenting cells (APCs) (Heath and Car-

bone, 2001). Through cross-presentation to CD8+ T cells, DCs

present nonreplicating antigens, e.g., from dying cells (Liu

et al., 2002; Luckashenak et al., 2008), noninfectious microbes

(Moron et al., 2003), and immune complexes (Regnault et al.,

1999). The CD8+ subset of classical DCs are specialized for

cross-presentation (den Haan et al., 2000; Schnorrer et al.,

2006; Dudziak et al., 2007; Sancho et al., 2009), but Mo-DCs

have not been assessed in vivo.

To address these gaps, markers are required to identify

Mo-DCs. Here we describe a unique approach using recently

isolated monoclonal anti-DC-SIGN/CD209a antibodies (Cheong

et al., 2010). We had previously defined in mice the DC-SIGN or

CD209a gene syntenic with human DC-SIGN/CD209 (Park et al.,

2001). DC-SIGN is a hallmark of human Mo-DCs in culture (Geij-

tenbeek et al., 2000b) but is not detected on the rich network of

presumably monocyte-independent DCs in human LNs in the

steady state (Granelli-Piperno et al., 2005). We now find that

anti-mouse DC-SIGN/CD209a monoclonal antibodies (mAbs)

distinguish Mo-DCs from classical DCs in cell suspensions

and tissue sections. We will report that the full differentiation of

monocytes to DC-SIGN/CD209a+ Mo-DCs does occur in vivo

and can be initiated by lipopolysaccharide (LPS) or LPS-ex-

pressing bacteria. In contrast to prior reports on inflammatory

monocytes, these Mo-DCs rapidly lose expression of monocyte

markers Gr-1/Ly6C and CD115/c-fms, markedly upregulate

expression of TLR4 and CD14, acquire the probing morphology

of DCs, localize to the T cell areas, and through Trif signal-

ing become powerful antigen-capturing and -presenting cells,

including cross-presentation of gram-negative bacteria.

RESULTS

DC-SIGN/CD209a Marks Mouse Mo-DCs with Strong
Antigen-Presenting Activity
To determine if new mAbs to mouse DC-SIGN/CD209a can

identify Mo-DCs, as occurs with cultured human Mo-DCs (Geij-

tenbeek et al., 2000b), we cultured bone marrow monocytes

(SSClo cells with high Ly6C and CD11b; Figure S1A available

online; Naik et al., 2006) with two cytokines, GM-CSF and IL-4,

as described for blood monocytes (Schreurs et al., 1999). After

4–7 days, we recovered�80%of the plated cells. Most had con-

verted to large nonadherent cells that extended and retracted

sheet-like processes in several directions from the cell body

(Figure 1A, left), which is the hallmark, probing morphology of

DCs (Steinman and Cohn, 1973; Lindquist et al., 2004). A poly-

clonal Ab to mouse DC-SIGN detected low levels of the

30 kDa protein in fresh monocytes, but within 2 days of culture,

DC-SIGN and MHC II were upregulated markedly (Figure 1A,

right), particularly with IL-4 and GM-CSF in combination,

whereas no DC-SIGN was expressed by marrow granulocytes

similarly cultured (Figure S1B).

To establish differentiation to DCs, we confirmed that fresh

marrow and blood monocytes did not react with mAbs to DC-

SIGN, MHC II, or CD11c (Figure S1B), but when cultured in

GM-CSF and IL-4, strong reactivity developed (Figure 1B, top).

The combination of GM-CSF and IL-4, but not single cytokines

or other hematopoietins like Flt3-L and M-CSF, allowed

monocytes to express MHC II and CD11c and develop a DC

morphology. When we compared marrow monocytes before

and after culture in GM-CSF and IL-4 (Figure 1C, left, days

0 and 4) to spleen monocytes and classical DCs (Figure 1C, right

panels), we found that Mo-DCs like spleen DCs lacked M-CSF

receptor or CD115, a key receptor for monocyte development,

whereas both marrow and splenic monocytes expressed

CD115 (Figure 1C). Splenic but not Mo-DCs expressed Flt3 or

CD135 (Figure 1C), the receptor for Flt3-L, a major hematopoie-

tin for DCs derived from nonmonocytic precursors.

During differentiation, Mo-DCs also lost the Gr-1 and Ly6C

markers of monocytes and reduced their levels of F4/80 but

retained high expression of CD11b and CD172a found on

both monocytes and DEC-205� CD8� monocyte-independent,

spleen DCs (Figure 1C). Monocytes andMo-DCs lacked CD8aa,

expressed by the DEC-205+ CD8+ subset of splenic DCs, but

Mo-DCs expressed high levels of CD24, like DEC-205+ CD8+

splenic DCs (not shown). The data in Figures 1B and 1C indicate

that monocytes acquire many surface features of splenic DCs

except that Mo-DCs express DC-SIGN and lack Flt3 or CD135.

To test if DC-SIGN+ Mo-DCs shared functions with splenic

DCs, we used the mixed leukocyte reaction (MLR), an example

of the immune-initiating function of DCs (Steinman and Witmer,

1978). In these and all T cell studies, we used CSFE-labeled

T cells and monitored the expansion of dividing or CFSElo cells,

as in Figures S1C and S1D. Mo-DCs induced with GM-CSF and

IL-4 stimulated a strong MLR, whereas monocytes cultured

under other conditions were weak (GM-CSF) or inactive (IL-4,

M-CSF, Flt3-L) (Figure S1C).

To evaluate presentation of protein antigens, we used TCR

transgenic T cells as responders and compared Mo-DCs to

two subsets of classical splenic DCs (DEC-205+ and DEC-

205�, corresponding toCD8+ andCD8�DCs).Weused40mg/ml,

a limiting concentration malarial circumsporozoite protein (CSP,

expressed in bacteria), and Ovalbumin (OVA). The Mo-DCs were

superior APCs when using graded doses of each type of DC

(Figure 1D, green).

To compare Mo-DCs with classical DCs that had also been

derived from marrow cultures, we used a Flt3-L culture system

as described by Naik et al. (2005) (Figure S1E). Over a range of

protein concentrations and cell doses, Mo-DCs were superior

cross-presenting cells relative to Flt3-L expanded, CD8+, and

CD8�DC equivalents (Figure S1F). TheMo-DCs also were supe-

rior to CD8+ DCs when irradiated, stably expressing OVA-CHO

cells were used as the antigen (Figure 1E). Thus in vitro derived

Mo-DCs are marked by DC-SIGN and are functionally strong

APCs, including cross-presentation.
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TLR4 Agonists Rapidly Recruit DC-SIGN+ Cells
to the T Cell Area of Lymph Nodes
To find out if comparable Mo-DCs develop in vivo in response

to microbial stimuli, we treated mice intravenously (i.v.) with

agonists for individual Toll-like receptors (TLRs) and looked

for DC-SIGN/CD209a+ cells in LNs 12–24 hr later. We also

assessed mannose receptor/CD206 because both CD206

(Sallusto et al., 1995) and DC-SIGN/CD209 (Geijtenbeek et al.,

2000b) are induced when cultured human monocytes become

Mo-DCs. Using LPS, we observed a 10-fold increase in

A B

C

D E

Figure 1. DCs Derived from Marrow Monocytes Express DC-SIGN and Are Potent APCs

(A) Marrow monocytes (Figure S1) were cultured in GM-CSF and IL-4 for 4–7 days. (Left) DIC image with typical dendritic morphology. (Right) Western blot with

rabbit polyclonal aDC-SIGN and mAb KL295 aMHC II.

(B) As in (A), showing MHC II, CD11c, and DC-SIGN Alexa 647-MMD3 (or isotype control, middle panel) on Mo-DCs.

(C) Surface markers on freshly isolated monocytes, GM-CSF/IL-4-induced Mo-DCs, and fresh spleen populations.

(D) Presentation of CSP or OVA, 40 mg/ml, to TCR transgenic T cells by graded doses of Mo-DCs or CD11chi DEC-205+ and DEC-205� DCs from spleen. Gating

strategy for CFSElo T cells is in Figure S1D.

(E) Presentation of stably transduced, irradiated CHO-OVA cells by graded doses of different populations of DCs cultured from bone marrow (DC:T cell ratio on

the x axis), including the equivalents of CD8+ and CD8� classical DCs from Flt3-L expanded marrow cultures (Figure S1E). Representative of 2–3 experiments in

triplicate or quadruplicate cultures.

Error bars = standard deviation (SD) (D and E).

418 Cell 143, 416–429, October 29, 2010 ª2010 Elsevier Inc.



DC-SIGN/CD209a+ CD206+ cells in skin-draining nodes 12–

24 hr later (Figure 2A) but not in spleen or mesenteric nodes

(not shown). Expansion took place in C3H/HeN but not C3H/

HeJ TLR4 mutant mice, indicating a need for TLR4 (Figure 2A,

compare top and bottom right). However, DC-SIGN/CD209a+

cells did not expand to other TLR agonists like Pam3CSK4,

poly(I:C), Flagellin, R848, and CpG, for TLR2, 3, 5, 7/8, and 9,

respectively (Figure 2B).

To determine whether Mo-DCs localize to T cell areas like

authentic DCs, we used new anti-DC-SIGN mAbs (Cheong

et al., 2010) to label lymph node sections. In PBS mice, there

were relatively few DC-SIGN+ cells, mainly in interfollicular

regions, beneath SIGN-R1/CD209b+ subcapsular macrophages

and between B220+ B cell follicles (Figure 2C, left and Fig-

ure S2A). However, 12 hr after LPS i.v., DC-SIGN+ cells were

abundant and localized to T cell areas, regions in which DCs

have been shown to present antigens to recirculating antigen-

specific T cells (Stoll et al., 2002; Mempel et al., 2004; Miller

et al., 2004; Shakhar et al., 2005) (Figure 2C). Likewise, DC-

SIGN+ cells accumulated in the T cell areas when we injected

LPS-bearing, heat-killed E. coli i.v. and subcutaneously (s.c.)

A B

C

D

E

Figure 2. Mobilization of DC-SIGN+Mo-DCs

to the T Cell Areas of Lymph Nodes

(A) TLR4-competent (C3H/HeN) or TLR4 mutant

(C3H/HeJ) mice were injected with 5 mg of LPS

i.v. After 24 hr, lymph node cells were stained

intracellularly with Alexa 647 MMD3 a-DC-SIGN

and Alexa 488 a-MMR/CD206 mAbs.

(B) Mice were injected i.v. with 10 mg of a-DC-

SIGN-Alexa 647 mAb and 5 mg of TLR agonist.

(C) Labeling of frozen sections with the indicated

mAb 12–24 hr after PBS, 5 mg LPS i.v., or 5 3

106 heat-killed E. coli or B. subtilis i.v. Alexa 647

B220 mAb marks B cell areas (blue). 1003magni-

fication.

(D and E) Lymph node sections from PBS- or LPS-

treated mice were stained with the indicated mAb.

4003 magnification.

but not LPS-lacking B. subtilis by these

routes (Figure 2C) or Listeria monocyto-

genes s.c. (not shown).

To determine if DC-SIGN+ cells were

distinct from DCs and macrophages

in the lymph node, we double-labeled

for DC-SIGN and several markers. In

PBS-injected mice, the few DC-SIGN+

cells were distinct from macrophages

in subcapsular and medullary regions

of lymph node, which in steady state

express CD206 (Figure 2D) and SIGN-

R1/CD209b (Figure S2). However, in

LPS-injected mice, there was a major

expansion of cells in the T cell area

expressing both CD206 and DC-SIGN/

CD209a (Figure 2D and Figure S2). The

DC-SIGN+ cells mobilized to the T cell

areas by LPS were clearly distinct from

other DCs, which expressed higher levels of CD11c, as well as

DEC-205/CD205 and Langerin/CD207 (Figure 2E and Fig-

ure S2). Also, DC-SIGN+ cells did not colabel with markers that

are abundant on lymph node macrophages, such as SIGN-R1/

CD209b and CD169 (Figure 2E, right panels and Figure S2)

and F4/80 (not shown). DC-SIGN/CD209a+ Mo-DCs also lacked

CD115 and Ly6C found on monocytes and inflammatory mono-

cytes (Geissmann et al., 2003) (not shown). Therefore, DC-SIGN

marks abundant cells in the T cell areas from LPS-treated mice,

which express molecules distinct from classical DCs, macro-

phages, and monocytes.

Mo-DCs Can Be Selectively Labeled with Injected
Anti-DC-SIGN/CD209a Antibody and Isolated
from Classical DCs in Lymph Nodes
To compare the properties of LPS-mobilized DC-SIGN+ cells

to other DCs in LNs, we needed a strategy to separate the cell

types. However, the problem we faced was that most DC-

SIGN is inside the cell and not on the cell surface, preventing

the separation of cell-surface-labeled DC-SIGN+ cells. To

Cell 143, 416–429, October 29, 2010 ª2010 Elsevier Inc. 419
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Figure 3. DC-SIGN+ Mo-DCs Are Induced upon Treatment with LPS or LPS-Bacteria

(A) Thirty micrograms Alexa 488 MMD3 a-DC-SIGN or control mAb were injected i.v. with LPS into WT or DC-SIGN�/� mice. Twelve hours later, lymph node

sections were fixed and stained with rabbit a-Alexa 488 to visualize the injected mAb in green. a-MMR/CD206 (red) identifies Mo-DCs, and A647 B220 mAb

(blue) B cells. 4003 magnification.

(B) Separation of three lymph node DC populations 12 hr after injecting i.v. 10 mg of Alexa 647MMD3 a-DC-SIGNmAb plus 5 mg of LPS. Skin-draining lymph node

cells were stained for lymphocyte lineage markers (CD3, CD19, NK1-1 [or DX-5]), CD11c, and DEC-205. Live, lineage� CD11c+ cells were gated and three pop-

ulations defined (Pop#1, #2, #3). Isotypes for DC-SIGN and DEC-205 are mouse IgG2c and rat IgG2a, respectively.

420 Cell 143, 416–429, October 29, 2010 ª2010 Elsevier Inc.



overcome this obstacle, during injection of LPS (or PBS con-

trols), we also included 10 mg of Alexa dye-labeled MMD3 anti-

DC-SIGN mAb, or isotype-matched control mAb, to allow the

DC-SIGN+ cells to take up the fluorescent mAb. When we exam-

ined sections of the injected LNs (Figure 3A), we found that the

injected anti-DC-SIGN mAb labeled abundant dendritic profiles

in the T cell area, but only if the mice had received LPS. No

such profiles were seen if we injected isotype control mAb, or

if we injected Alexa 488-labeled MMD3 into DC-SIGN�/� mice

(Figure 3A), which did mobilize numerous macrophage man-

nose receptor (MMR)/CD206+ cells in response to LPS (Fig-

ure 3A and Figure S2E). The anti-DC-SIGN mAb-targeted cells

did not express detectable CD115, but this M-CSF receptor

strongly marked lymph node medullary macrophages, and had

low levels of CD11c but no DEC-205, which were expressed

by classical DCs in the lymph node (not shown).

Therefore to isolate Mo-DCs, we injected LPS together

with labeled MMD3 mAb (or isotype control mAb) and made

cell suspensions. To identify DCs, we gated on lymphocyte

lineage-negative, CD11c+ cells, and we surface labeled for

DEC-205 on cross-presenting classical DCs. In LNs from mice

injected with LPS plus-labeled MMD3 mAb, there was a specifi-

cally stained DC-SIGN+ population, as there was no staining if

isotype control mAb was injected (Figure 3B), or if we studied

DC-SIGN�/� mice (Figure S3A). Labeling with MMD3 was com-

parable in wild-type (WT) and Fc receptor g�/�mice, further indi-

cating that labeling required DC-SIGN and was not Fc mediated

(Figure S3B). The CD11c+ lymphocyte-negative cells also had

DEC-205+ and DEC-205� populations, both lacking DC-SIGN.

Thus LNs from LPS-treated mice have three populations:

population #1 corresponds to DC-SIGN/CD209a+ DCs, which

we will show derive from monocytes, whereas populations #2

and #3 correspond to DEC-205+ (including CD8+, Figure S3A)

and DEC-205� resident DCs (Vremec and Shortman, 1997)

(Figure 3B and Figures S3A and S3B).

When tested for surface markers following cell sorting, all three

populations of DCs from LPS-treated LNs expressed high levels

of MHC II, which is expected of DCs, and all expressed CD40, 80,

and 86with the DC-SIGN+ andDEC-205+ subsets having the high-

est levels (Figure 3C). However, the DC-SIGN+ population had

lower levels of CD11c (not shown). We also verified that the sorted

DC-SIGN+cells had the probingmorphology ofDCs (Figure 3Dand

Movie S1 for video). All three DCpopulations likewise failed to stain

for CD115/c-fms, but DC-SIGN+ cells lacked CD135/Flt3, which

was expressed by lymph node resident DCs (Figure 3E). Like

DEC-205� classical DCs, DC-SIGN+ DCs were CD11b+ and

CD172a/SIRPahi, F4/80+, CD24lo, and CD8� (Figure 3E).

To test LPS-bearing bacteria, we injected the labeled MMD3

mAb together with either dead or live E. coli and, 12 hr later,

stained cells from draining LNs. Either dead or live E. coli, but

not dead or live B. subtilis that lacked LPS, mobilized DC-

SIGN+ cells and upregulated CD86 on splenic DCs if injected

i.v. (Figure 3F and Figure S3C). These data indicate that cells

with the morphology and markers of Mo-DCs accumulate

in vivo in response to LPS and LPS+ bacteria, and they resemble

CD8� DEC-205� resident DCs except for selective DC-SIGN/

CD209a and MMR/CD206 expression, two uptake receptors

abundant on human Mo-DCs ex vivo (Sallusto et al., 1995; Gra-

nelli-Piperno et al., 2005).

DC-SIGN+ MMR+ Mo-DCs in LPS-Stimulated Lymph
Nodes Derive from Monocytes
To determine whether LPS mobilized DC-SIGN+ cells frommono-

cytes, we injected 23 106 marrowmonocytes fromCD45.2+ mice

i.v. into CD45.1+ hosts. Next day, the mice were injected i.v. with

labeled MMD3 mAb and 5 mg of LPS. Twenty-four hours later,

skin-drainingLNswere testedbyflowcytometry forMo-DCrecruit-

ment. In three experiments, with three mice each, LPS induced

an increase in CD45.2+ donor-derived, DC-SIGN/CD209a+ and

MMR/CD206+ cells in all mice, whereas donor-derived cells were

absent in nodes of PBS-injected mice (Figure 4A).

To establish the monocyte origin of LPS-recruited Mo-DCs by

an alternative method, we focused on LysMcre 3 iDTR mice, in

which treatment with diphtheria toxin (DT) depletes monocytes

and macrophages (Goren et al., 2009). We confirmed that a

single dose of DT i.v. decreased >80% of blood monocytes

12 hr later (Figure 4B). DT-treated, LPS-injected WTmice gener-

ated CD11c+ DC-SIGN+ cells normally (Figure 4B, right, arrow),

but DT-treated, LPS-injected LysMcre 3 iDTR mice failed to

generate Mo-DCs, although the classical monocyte-indepen-

dent DC subsets were normally represented (Figure 4B, right).

Likewise in tissue sections, DC-SIGN+ DCs were not recruited

into the T cell areas of LNs of LPS-treated LysMcre 3 iDTR

mice upon DT treatment, but DEC-205+ DCs were abundant in

LPS- and DT-treated WT and LysMcre 3 iDTR mice (Figure 4C,

green versus red), again showing that Mo-DCs derived from

monocytes, whereas classical DCs did not.

To test whether the spleen was needed, a recently recognized

source of monocytes (Swirski et al., 2009), we studied sple-

nectomized mice. However after LPS injection, these mice

normally mobilized DC-SIGN/CD209a+ MMR/CD206+ Mo-DCs

(Figure S4A).

To selectively deplete classical DCs, we employed Flt3�/�

mice, which lack classical DCs because of a need for Flt3

signaling. We confirmed a loss of classical DCs in Flt3�/� mice

(Waskow et al., 2008), but in contrast, LPS comparably mobi-

lized Mo-DCs from Flt3�/� and WT mice using either DC-SIGN/

CD209a or MMR/CD206 as markers (Figure 4D and Fig-

ure S4B). To determine whether cell proliferation was involved,

we labeled mice with BrdU during the 12 hr treatment with

LPS, but no labeling was evident in contrast to the basal level

of BrdU labeling of classical DCs (Figure S4C). These results pro-

vide considerable evidence for themonocyte origin of DC-SIGN+

DCs in LNs from LPS-treated mice.

(C) Expression of maturation markers on three DC populations.

(D) Representative morphology (DIC images) of DC-SIGN+ cells sorted from LNs of LPS-treated mice as in (B). 6003 magnification.

(E) Three DC populations as in (B) were sorted and stained with PE-mAbs.

(F) As in (B), but fluorescence-activated cell sorting (FACS) analyses and total numbers of lineage�CD11c+ cells frommice 12 hr after i.v. injection ofMMD3 a-DC-

SIGN mAb plus killed E. coli or B. subtilis (data with live organisms are in Figure S3C).
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L-Selectin and CCR7 Are Required for LPS to Generate
Mo-DCs
To begin to identify mechanisms of Mo-DC mobilization, we

evaluated the lymph node homing molecule used by lympho-

cytes, L-selectin/CD62L, which is also expressed on monocytes

prior to their becoming Mo-DCs (e.g., in Figure 1C). We treated

mice with isotype control or anti-CD62L (MEL-14) mAb and

1 hr later injected LPS. Anti-CD62L blocked Mo-DC formation

in LNs using immunolabeling of sections and cell suspensions

(Figures 5A and 5B).

To identify the required chemokine receptors, we tested

four chemokine receptor knockout mice. Accumulation of

DC-SIGN+ Mo-DCs was critically dependent on CCR7 (Fig-

ure 5C, right). Only a partial but statistically significant decrease

in Mo-DCs was noted in CCR2�/� mice (Figure S5A), whereas

CCR5 and CCR6 were not necessary (Figure 5C). Monocytes

disappeared normally from the blood in LPS-treated CCR7�/�

mice, and CCR7 was not required to generate Mo-DCs in vitro

(Figures S5B and S5C). In all these experiments, we verified

that spleen DCs in the knockout mice responded normally to

LPS by upregulating CD86 (Figure 5C, right). To establish that

the need for CCR7 was cell intrinsic, we made mixed bone

marrow chimeras with 50:50 mixes of WT and CCR7�/� donor

cells, each marked with CD45.1 and CD45.2 and injected into

CD45.1+ WT hosts. Six weeks later, we certified chimerism in

the blood (Figure 5D, left) and injected LPS to recruit DC-

SIGN/CD209a+ MMR/CD206+ DCs. LPS greatly reduced the

number of monocytes in the blood (Figure 5D, middle), but only

CD45.1+ WT cells and not CD45.2+ CCR7�/� cells formed

Mo-DCs (Figure 5D, right), indicating that the need for CCR7

by Mo-DCs is cell intrinsic.

Mo-DCs Efficiently Present Proteins and Bacteria
Captured In Vivo to T Cells
To test the antigen-presenting functions of Mo-DCs, we initially

sorted threepopulationsofCD11chiDCs from inflamedLNsusing

CD11c, DEC-205, and DC-SIGN as markers as in Figure 3B. All

threeDC types fromLPS-treatedmice effectively stimulated allo-

geneic T cells in the MLR assay, with Mo-DCs being moderately

more active (Figure 6A, left and Figure S6). Surprisingly, Mo-DCs

were comparable or superior to classical DCs in presenting two

different proteins (OVA, which is glycosylated, and CSP, which

is nonglycosylated) to CD8+ and CD4+ TCR transgenic T cells

(Figure 6A). Thus just like the Mo-DCs that can be generated in

culture by adding GM-CSF and IL-4 to monocytes, LPS-mobi-

lized Mo-DCs in vivo are as good or better presenting cells than

classical DCs, including cross-presentation.

To consider antigen capture in vivo, we injected LPS, then

soluble CSP or OVA protein s.c. 10 hr later. At 12 hr, or 2 hr after

CSP/OVA injection, we isolated DC-SIGN+ Mo-DCs as well as

DEC-205+ and DEC-205�, DC-SIGN� classical DCs from the no-

des. When added in graded doses to TCR transgenic, CD4+ and

CD8+ T cells without further antigen, Mo-DCs were again

comparable or superior to classical DCs for both CSP and

OVA (Figure 6B and Figure S6), showing that these cells capture

and present on both MHC I and II in vivo.

A B

C D

Figure 4. Monocyte Origin of DC-SIGN+ Mo-DCs

(A) CD45.2+marrowmonocytes were transferred i.v. into CD45.1+ hosts. Twenty-four hours later, PBS or 5 mg of LPSwas injected i.v. with 10 mg Alexa 647-MMD3

a-DC-SIGN, and 24 hr later, DC-SIGN+ CD206+ DCs of CD45.2 origin were enumerated. This is one of three similar experiments.

(B) WT and LysMCre3 iDTRmice were injected with DT, and 12 hr later, bloodmonocytes (Ly6G�CD115+ CD11b+ Ly6Chi/lo) were analyzed (left panels). Twenty-

four hours after DT, 5 mg of LPS plus 10 mg of MMD3-Alexa 647 mAb were given i.v., and 12 hr later, skin-draining lymph node cells were analyzed as CD19/CD3/

NK1.1� and CD11c high and segregated into three DC populations (right) to look for DC-SIGN+ Mo-DCs (arrow).

(C) Lymph node sections were stained forMo-DCswith a-DC-SIGN (BMD10, green), resident DCswith a-DEC-205 (NLDC145, red), and B cells with a-B220 (blue)

at 1003 magnification.

(D) WT and Flt3�/� mice were injected with 5 mg of LPS and 10 mg of MMD3-Alexa 647 a-DC SIGN mAb to enumerate Mo-DCs expressing DC-SIGN (blue) or

MMR/CD206 (red) 24 hr later. Shown are cells/106 lymph node cells from two independent experiments with 2 mice/group.
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To determine the type of T cell that was developing in

response to antigen-presenting Mo-DCs, we collected the

medium from 4 day cocultures of OT-II CD4+ TCR transgenic

T cells with Mo-DCs that had captured OVA in vivo. TheMo-DCs

induced strong production of IFN-g and IL-2 but not IL-4, IL-10,

or IL-17 (Figure 6C), suggesting Th1 differentiation.

To evaluate presentation of bacterial antigens, we injected

recombinant E. coli OVA (or E. coli control). Twelve hours later,

we isolated three populations of DCs from the LNs. Mo-DCs

were even more effective than DEC-205+ classical cross-pre-

senting DCs, whereas DEC-205� DCs did not cross-present

bacteria (Figure 6D).

Mo-DCs Selectively Express CD14, a Needed
Coreceptor for Trif-Dependent LPS Signaling
To begin to understand why LPS and gram-negative bacteria

were superior agonists for mobilizing Mo-DCs, we first used

quantitative PCR to assess expression of several TLRs in

marrow monocytes and Mo-DCs. Both cells expressed several

TLRs, but TLR4 and its coreceptor CD14 were markedly upregu-

lated in Mo-DCs (Figure 7A).

To pursue the contribution of the LPS coreceptor, CD14, we

usedmonoclonal anti-CD14 to show thatmonocyteswere selec-

tively CD14+ in blood (Figure S7A), whereas among CD11chi DCs

in the LNs from LPS-stimulated mice, only DC-SIGN+ Mo-DCs

were CD14+ (Figure 7B). When we studied CD14�/� mice, which

lacked CD14 on monocytes (Figure S7B), LPS injection failed to

mobilize Mo-DCs (Figure 7C). We then compared mice lacking

the MyD88 and Trif adaptors for TLR4 signaling, where CD14

is a known coreceptor for MyD88-independent, Trif-dependent

signaling (Jiang et al., 2005). Trif, not MyD88, was essential

for LPS to mobilize Mo-DCs (Figure 7D) and to upregulate

CD86 on splenic DCs (Figure S7C). CD14+ DCs accumulated

with identical kinetics to DC-SIGN+ Mo-DCs, peaking at 24 hr

and becoming the dominant DCs in LNs (Figure 7E and Fig-

ure S7D). Together, the data indicate that CD14, a coreceptor

for TLR4, is upregulated by LPS and is essential for Mo-DC

differentiation via Trif signaling.

A B

C

D

Figure 5. L-Selectin and CCR7-Dependent Trafficking of DC-SIGN+ Mo-DCs

(A and B) mAb to block L-selectin (MEL-14, 100 mg i.v.) was given 1 hr before injection of LPS and a-DC-SIGN mAb. After 24 hr, LNs were analyzed by staining at

1003 magnification (A) or FACS (B).

(C) Chemokine receptor KOmice were injected with LPS i.v., and 24 hr later, lymph node cells were stained for intracellular DC-SIGN andMMR/CD206. Systemic

injection of LPS was confirmed by CD86 upregulation on spleen DCs (right).

(D) Blood chimerism 6 weeks after lethal irradiation and reconstitution with CD45.1 (WT) and CD45.2 (CCR7�/�) in CD45.1 hosts (left). Twelve hours after LPS,

blood monocytes had largely disappeared (middle). LNs from these same animals were stained for CD45.1, CD45.2, DC-SIGN, and MHC II to show that Mo-DCs

were WT in origin.
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To find out if selective expression of CD14 provided an inde-

pendent means to isolate Mo-DCs after injecting antigens

in vivo, we compared CD14 surface labeling to MMD3 in vivo

labeling. With either approach, Mo-DCs were similar and supe-

rior cross-presenting DCs (Figure 7E). Thus monocyte differenti-

ation to DCs in response to LPS requires CD14, which serves as

an alternative marker to identify and isolate Mo-DCs from clas-

sical DCs.

DISCUSSION

One can use the term ‘‘authentic’’ for the Mo-DCs described

here for several reasons, which have not previously been noted

for inflammatory monocytes. The Mo-DCs are dendritic cells in

terms of their motility because they are nonadherent cells that

continually form and retract processes in the living state, iden-

tical to the probing morphology of DCs in the T cell areas of living

LNs (Lindquist et al., 2004). These Mo-DCs also concentrate in

the T cell areas, again a classic feature of DCs and a location

that facilitates clonal selection of antigen-specific T cells from

the recirculating repertoire. The Mo-DCs are very similar in

phenotype to DCs in lymphoid tissues including the loss of

markers that were used previously to positively identify inflam-

matory monocytes in vivo, i.e., Ly6C and Gr-1 antigens and

CD115/c-fms receptor.

Importantly, when Mo-DCs are compared functionally to clas-

sical DCs from the same LNs, the former are not only active but

can be superior in stimulating the MLR and in presenting protein

antigens, administered in vitro and also in vivo prior to testing as

presenting cells. A large amount of previous emphasis has been

A

B

C D

Figure 6. Presentation of Malaria CS and OVA Proteins by Three Types of DCs

(A). C57BL/6 or B6 3 BALB/c F1 mice were injected i.v. with 5 mg LPS for 12 hr to isolate three DC fractions (>95% purity), as in Figure 3B. Graded doses were

added with 40 mg/ml protein to 50,000 CFSE-labeled T cells, and 3–4 days later, CFSElo T cells were counted. An MLR was also run to verify DC activity.

(B) As in (A), but mice received 5 mg of LPS i.v. for 12 hr, as well as 50 mg of CSP or OVA protein s.c. in each paw for 2 hr before DC and B cell isolation. Repre-

sentative data of two experiments in triplicate or quadruplicate cultures are shown. Error bars = SD.

(C) As in (B), but enzyme-linked immunosorbent assay (ELISA) was used tomeasure the indicated cytokines in themediumof cocultures inwhich different types of

lymph node DCs were used to present OVA to OT-II CD4+ T cells. Error bars = SD.

(D) 5–103106 live E. coli-OVA or control E. coliwere injected s.c. with 10 mgMMD3mAb. Twelve hours later, three populations of lymph node DCs were isolated

and used to stimulate OT-I CD8+ T cells. This is representative of two experiments in triplicate. Error bars = SD.
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placed on the superior cross-presenting activity of the CD8+ or

DEC-205+ subset of DCs, but the Mo-DCs we describe can be

equally or more effective than CD8+ DCs, including for bacteria

injected in vivo. Thus Mo-DCs are equivalent in many functional

respects to DCs, except that they are monocyte dependent,

whereas numerous prior studies show that classical DCs are

monocyte independent (Naik et al., 2006; Varol et al., 2007)

and derive from a committed pre-cDC in the bone marrow (Liu

et al., 2009). None of these new functional features of Mo-DCs

have been described before for monocyte-derived cells in

various inflammatory conditions.

The finding that permitted our research was the derivation of

mAbs to DC-SIGN or CD209a that recognized this lectin in tissue

sections, much of which are intracellular in location (Cheong

et al., 2010). The new anti-DC-SIGN/CD209a mAbs allowed us

to visualize the LPS-induced mobilization of Mo-DCs in the

T cell areas and distinguish them from the resident DCs there.

Previously, a combination of CD11b and CD11c markers were

used to help identify inflammatory monocytes with some

features of DCs (Leon et al., 2007; Serbina et al., 2003; Nakano

et al., 2009; Hohl et al., 2009; Siddiqui et al., 2010; Kool et al.,

2008), but these integrins are not sufficient to permit localization

A B

C

D

E F

Figure 7. Mo-DCs Selectively Express CD14, a Required Coreceptor for Their Mobilization

(A) Quantitative PCR to assess expression of mRNA for several TLRs and CD14 in marrow monocytes and Mo-DCs. Error bars = SD.

(B) DC-SIGN+ Mo-DCs colabel for CD14 expression.

(C) CD14�/� mice fail to mobilize Mo-DCs in response to LPS.

(D) DC-SIGN+ Mo-DCs are mobilized in MyD88�/� but not MyD88�/� 3 Trif�/� mice. The numbers of DC-SIGN+ Mo-DCs per million lymph node cells are on the

panels.

(E) Kinetics of formation and disappearance of Mo-DCs in LNs from LPS-treated mice, monitored by in vivo labeling of lymphocyte-negative, CD11chi DCs with

MMD3 anti-DC-SIGN mAb or by ex vivo labeling for CD14. Mo-DC’s numbers are averages of two mice each per time point.

(F) Mice were injected with LPS for 12 hr, and 2 hr prior to isolation CSP was injected. Mo-DCs were labeled either with MMD3 mAb in vivo or with anti-CD14 ex

vivo and used to stimulate CSP-specific CD8+ T cells.

Error Bars = SD. Representative data of at least two independent experiments (A–F) are shown.
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in situ, and the Mo-DCs actually have lower levels of CD11c than

classical DCs. Previous isolations also used antibodies to Ly6C

or Gr-1, but these markers are lost from the Mo-DCs described

here.

Although DC-SIGN/CD209a was critical for identifying

authentic Mo-DCs in vivo, functions for this lectin need research.

We showed, for example, that DC-SIGN�/� monocytes become

Mo-DCs (marked byMMR/CD206) in the T cell areas, just likeWT

monocytes, when themice are given LPS (Figure S2E). Therefore

DC-SIGN seems not to be involved in Mo-DC mobilization and

differentiation. Also Mo-DCs cultured from DC-SIGN�/� mice

still present antigens to OT-I and OT-II transgenic T cells com-

parably to WT (not shown). DC-SIGN/CD209 can play patho-

genic roles, either in transmitting infectious agents like HIV and

CMV in the case of cultured human Mo-DCs (Geijtenbeek

et al., 2000a; Halary et al., 2002) or in transducing inhibitory

signals as seen when human DC-SIGN/CD209 interacts with

mycobacteria (Geijtenbeek et al., 2003; Tailleux et al., 2003).

DC-SIGN/CD209 could also have protective functions for cap-

ture and presentation of glycan-modified antigens (Tacken

et al., 2005). Also the pathway described here to mobilize

DC-SIGN/CD209a+ DCs could generate new vaccination strate-

gies, given the powerful antigen presentation and immune stim-

ulatory consequences of this full DC differentiation pathway.

We have identified one molecular pathway to produce

Mo-DCs in vivo, which is rapid differentiation from blood mono-

cytes upon administration of TLR4 agonists to mice. The clas-

sical method to produce DC-SIGN/CD209+ MMR/CD206+

Mo-DCs from human (Romani et al., 1994; Sallusto and Lanza-

vecchia, 1994) and mouse (Schreurs et al., 1999; Agger et al.,

2000) blood monocytes takes several days of culture in GM-

CSF and IL-4, but here we show that LPS and LPS+ live and

dead bacteria act rapidly within hours. Blood monocytes

drop to 20% of their normal levels 6–12 hr after i.v. LPS, and

at the same time, cells move into LNs and differentiate into

DC-SIGN/CD209a+ MMR/CD206+ Mo-DCs. This influx requires

CCR7 and CD62L, both expressed by bone marrow and blood

monocytes. Among the agonists for Toll-like receptors that

we studied, only LPS via TLR4 had this capacity to induce

Mo-DCs. In spite of hundreds of studies of the response of

mice to LPS, this mobilization of antigen-presenting cells was

not previously appreciated.

To explain the peculiar role of TLR4 agonists, we first exam-

ined gene expression for several TLRs. Whereas monocytes

expressed many TLRs, only TLR4 increased markedly when

monocytes differentiated into Mo-DCs in culture. This was also

the case for the CD14 coreceptor for TLR4, which mediates

MyD88-independent and Trif-dependent TLR4 signaling (Jiang

et al., 2005). Xu et al. have shown previously that GM-CSF/IL-

4-derived DCs produce cytokines in response to several ago-

nists, e.g., Pam3Cys and ODN1826 (Xu et al., 2007), which we

found did not mobilize Mo-DCs from monocytes in vivo.

However, a key feature of the Mo-DCs that are mobilized by

LPS is that they express CD14, which not only proved to be an

independent marker for Mo-DCs but was also essential for their

generation.

We would like to propose that the mobilization of Mo-DCs

described here has two roles. One is part of the innate response

to gram-negative bacteria and other agents that contain agonists

for the TLR4-CD14 complex, although this will require additional

studies of the functional properties of Mo-DCs such as the

production of cytokines and chemokines. A second is as a segue

to the adaptive immune response. During the TLR4-based

response, Mo-DCs increase while classical DCs decrease, so

that Mo-DCs become the dominant cell for induction of effective

and combined CD4+ and CD8+ T cell immunity, with or without

the requirement for bacterial replication in this newly mobilized

DC reservoir.

EXPERIMENTAL PROCEDURES

Mice

DC-SIGN�/� mice were from the Consortium for Functional Glycomics

(Scripps Res. Inst., La Jolla, CA, USA). Flt3�/� (I.R. Lemischka, Mount Sinai

School of Medicine), GMCSF-R�/� (G. Begley, Amgen), MyD88�/�(S. Akira,
Univ. of Osaka), and MyD88�/� 3 Trif�/� (E. Pamer, Memorial Sloan-Kettering

Cancer Center) were provided by M. Nussenzweig (Rockefeller Univ.),

iDTR mice by A. Waisman (Univ. of Mainz), and FcR g�/� mice by J. Ravetch

(Rockefeller Univ.). C57BL/6 (CD45.1 or CD45.2), C3H/HeJ, chemokine

receptor (CCR2, CCR5, CCR6, and CCR7), Lysozyme-M Cre (LysMcre), and

CD14�/�mice were from Jackson Labs and C3H/HeN and splenectomized

mice from Taconic Farms. Mice in specific pathogen-free conditions were

studied at 6–10 weeks according to institutional guidelines of the Rockefeller

University.

Lipopolysaccharide and Bacteria

LPS from E. coli 055:B5 (Sigma) was given i.v., s.c., or intraperitoneally (i.p.) at

a dose of 5 mg to induce Mo-DCs. For optimal LPS activity, stocks had to be

dissolved at 10 mg/ml or higher. Other TLR agonists were purchased from Inviv-

ogen and injected i.v. at 5 mg/mouse. We also tested bacteria at a dose of 53

106 per mouse, both heat-killed and live bacteria (E. coli DH5a, B. subtilis).

To evaluate presentation of proteins from bacteria, recombinant E. coli ex-

pressing OVA was used.

Bone Marrow Monocytes and DCs

Monocytes were sorted on a FACSAria (BD Biosciences) as SSClo, CD11bhi,

Ly6Chi or as Ly6G�, CD11bhi, Ly6Chi cells, the latter ensuring higher yields.

To generate Mo-DCs, monocytes were cultured with cytokines (M-CSF,

GM-CSF, GM-CSF, IL-4; PeproTech) at 20 ng/ml or Flt3-L at 200 ng/ml in

RPMI with 5% FBS and antibiotic-antimycotic plus b-mercaptoethanol (Invi-

trogen). At 4–7 days, nonadherent cells were removed to test function, or for

M-CSF, adherent cells were recovered with Cellstripper nonenzymatic cell

dissociation solution (Mediatech). Alternatively, to generate DCs, total bone

marrow was cultured with Flt3-L (400 ng/ml) for 9 days as described (Naik

et al., 2005), and the equivalents of CD8+ and CD8� spleen DCs were sorted

as CD24hi CD11blo and CD24lo CD11bhi cells, respectively.

Monocyte and Bone Marrow Transfer

23 106 CD45.2+marrowmonocytes were transferred to 4- to 6-week CD45.1+

mice (>8 weeks gave poor results). For mixed marrow chimeras, 50:50

mixtures of knockout (KO) and WT marrow were injected i.v. into lethally irra-

diated (5.5 Gy twice, 3 hr apart) mice. To deplete monocytes, DT (Sigma) in

PBS (1 mg/ml, stored at �80�C) was injected i.v. to LysMcre 3 iDTR mice at

25 ng/g weight (�500 ng/mouse).

Antibodies, Flow Cytometry, and Microscopy

Rabbit polyclonal antibody to a 14 amino acid cytoplasmic domain pep-

tide of DC-SIGN and mAbs to DC-SIGN (BMD10, BMD30, and MMD3)

were described (Cheong et al., 2010). mAbs were conjugated with biotin

or Alexa 647 (Invitrogen) following manufacturer’s instructions. These

bound specifically to CHO cells stably expressing mouse DC-SIGN. 22D1

(a-SIGN-R1/CD209b), SER4 (a-CD169), L31 (a-CD207), NLDC145 (a-DEC-

205/CD205), N418 (a-CD11c), KL295 (a-MHC II I-Ab/d b), GL117 (rat IgG2a
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control), and MEL-14 (a-CD62L) mAbs were purified from hybridoma superna-

tants or purchased from eBioscience, and they were tested to be endotoxin

free (QCL-1000 kit, BioWhittaker). We purchasedmAbs conjugated to different

fluorochromes to CD19, CD3, NK1.1, DX-5, CD206, CD11b, I-A/I-E (MHC II),

CD135, CD172a, CD14, and Ly6G from BD Bioscience; MMR/CD206 from

Biolegend; PE-a-mouse CD115, CD8a, Gr-1, CD11b, CD40, CD24, Mac-3,

CD62L, and CD14 from eBioscience; F4/80 and Ly6C (PE or Alexa 647) from

AbD Serotec. For BrdU labeling, 200 ml of 10 mg/ml of BrdU was injected

i.p. for 12 hr; staining followed manufacturer’s instruction (FITC BrdU flow

kit, BD).

Lymph Node Cells and Sections

Skin-draining nodes were treated with collagenase D (400 U/ml) for 30 min at

37�C. Cells were preincubated 10 min with 2.4G2 mAb at 4�C to block Fc

receptors, stained with fluorescent mAbs, acquired on a BD-LSRII, and

analyzed using flowjo (Treestar). To label Mo-DCs in vivo, we injected 10 mg

of Alexa 647-MMD3 a-DC-SIGN or control mouse IgG2c mAb along with

LPS. Lymphocytes (CD3+, CD19+, DX5+, or NK1-1+) and B220+ plasmacytoid

DCs were excluded, and three populations of CD11chi cells were separated

as DC-SIGN+, DEC-205+ (Alexa 488-NLDC145 mAb) and DEC-205�

DC-SIGN� DCs. CD19+ cells were also sorted. 10 mm OCT-embedded lymph

node sections were acetone-fixed, stained with BMD10 or BMD30 CD209a

mAb for 1 hr at room temperature or 4�C overnight, followed by mouse

anti-rat IgG2a-HRP for 30 min and Tyramide-signal amplification (Invitrogen).

B220-Alexa 647 stained B cell areas in confocal microscopy (LSM510, Zeiss).

We also injected into live mice 30 mg Alexa 488 MMD3 anti-DC-SIGN or

isotype control mAb i.v. Tissues were fixed in 4% HCHO/PBS for 20 min,

then 0.5% Triton X-100 for 15 min, and stained with rabbit anti-Alexa

488 and anti-rabbit HRP to label using TSA Alexa 488. For live-cell DIC

imaging, Mo-DCs were seeded on glass bottom culture dishes (MatTek)

and examined in an Olympus LCV110U incubator fluorescence microscope.

Confocal and live-cell images were analyzed with MetaMorph software

(Universal Imaging).

Splenic Monocytes and DCs

These were sorted from collagenase-digested spleen as monocytes (CD19�

CD3� DX-5� CD11b+ CD11cdim Ly6G� Ly6C+) and two classical DC subsets

(CD19� CD3� DX-5� CD11chi and either DEC-205+ or DEC-205� cells).

Antigen Presentation

T cells specific for OVA (OT-I, OT-II) or malarial (P. yoeli) circumsporozoite

protein (CSP) were cultured with graded doses of DCs or B cells. OVA

(LPS-free, Seikagaku Corp.) or CSP (Choi et al., 2009) was added in graded

doses but usually at 40 mg/ml in vitro, or the proteins were injected for 2 hr

in vivo (50 mg/foot pad) during LPS mobilization of Mo-DCs. In some exper-

iments, we used irradiated CHO cells stably transduced with OVA as the

source of antigen. Splenic transgenic T cells were enriched after Fc block

by excluding B220+, F4/80+, NK1.1+, I-Ab+, and CD4+ or CD8+ T cells using

anti-rat IgG Dynabeads (Invitrogen), labeled with 5 mM CFSE (Invitrogen) and

added to round bottom microtest wells at 50,000/well. After 3 days for OT-I

or 4 days for OT-II and CS T cells, proliferation of live (Aqua dye negative,

Invitrogen) T cells was evaluated by CFSE dilution and staining with mAb

to Va2 for the OT-I or OT-II TCR and Vb8.1/8.2 for CSP. For the MLR,

DCs from C57BL/6 mice were added in graded doses to CFSE-labeled

BALB/c T cells (NK1.1, I-A, B220, F4/80 negative cells) and assayed at

day 4.

Quantitative PCR for TLR and CD14 Expression by Monocytes

and Mo-DCs

Taqman probes (AssayID) were used for TLR4 (Mm00445273_m1), TLR2

(Mm00442346_m1), TLR3 (Mm00628112_m1), TLR7(Mm00446590_m1),

TLR9 (Mm00446193_m1), and CD14(Mm00438094_g1) from Applied Biosys-

tems. The relative expression was normalized by TATA-box binding protein

(TBP) housekeeping gene expression. All qPCR experiments were performed

with LightCycler 480 Real-Time PCR System (Roche).

SUPPLEMENTAL INFORMATION
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