37 research outputs found

    Linear Spatial Pyramid Matching Using Non-convex and non-negative Sparse Coding for Image Classification

    Full text link
    Recently sparse coding have been highly successful in image classification mainly due to its capability of incorporating the sparsity of image representation. In this paper, we propose an improved sparse coding model based on linear spatial pyramid matching(SPM) and Scale Invariant Feature Transform (SIFT ) descriptors. The novelty is the simultaneous non-convex and non-negative characters added to the sparse coding model. Our numerical experiments show that the improved approach using non-convex and non-negative sparse coding is superior than the original ScSPM[1] on several typical databases

    Brzo otkrivanje uzročnika virusnog proljeva goveda u mlijeku iz spremnika pomoću kombinacije metoda umnožene rekombinazne polimeraze i test-traka za „lateral flow“ analizu

    Get PDF
    Bovine viral diarrhea virus (BVDV) is one of the most prevalent and economically important pathogens of ruminants, and leads to significant financial losses to the livestock industry worldwide. Development of rapid and accurate diagnostic methods is of great importance for the control and eradication of BVDV infection. The aim of this study was to develop a novel isothermal recombinase polymerase amplification (RPA) method combined with a lateral flow dipstick (LFD), for rapid detection of BVDV. RPA primers and a probe targeting the specific conserved 5′-UTR of BVDV genome were designed. The RPA amplification could be finished at a constant temperature of 38 0000C for 15 min, and the amplification product was easily visualized on a simple LFD within 5 min. The detection limit of this assay was 20 copies per reaction, and there was no cross-reactivity with other bovine infectious viruses, such as infectious bovine rhinotracheitis virus (IBRV), bovine enterovirus (BEV), bovine coronavirus (BcoV), bovine parainfluenza virus type 3 (BPIV-3), bovine ephemeral fever virus (BEFV) and bovine respiratory syncytial virus (BRSV). The assay performance on bulk tank milk was also evaluated, and the sensitivity and accuracy of BVDV LFD RPA was compared with real-time RT-PCR. Of 284 pool or bulk tank milk samples, 51 were found to be positive by RPA assay, whereas 52 were positive by real-time RT-PCR. The coincidence rate between LFD RPA and real-time RT-PCR was 97.54% (277/284).Uzročnik virusnog proljeva goveda (BVDV) jedan je od najčešćih i ekonomski važnih patogena preživača koji uzrokuje znatne financijske gubitke u stočarskoj industriji širom svijeta. Razvoj brzih i točnih dijagnostičkih metoda iznimno je važan za kontrolu i iskorjenjivanje zaraze BVDV-om. Cilj ovog istraživanja bio je razviti novu metodu za brzo otkrivanje BVDV-a baziranu na kombinaciji metoda umnožene rekombinazne polimeraze i test-traka za „lateral flow“ analizu. Oblikovane su početnice i probe za umnažanje rekombinazne polimeraze usmjerene na specifični konzervirani 5’-UTR u genomu BVDV-a. Umnažanje se moglo završiti pri konstantnoj temperaturi od 38 °C tijekom 15 minuta i produkt umnažanja je lako vizualiziran na jednostavnoj test-traci za „lateral flow“ analizu unutar 5 minuta. Test je ograničen na 20 kopija po reakciji, pri čemu nije bilo križne reaktivnosti s drugim goveđim zaraznim virusima kao što su infektivni rinotraheitis virusa goveda (IBRV), goveđi enterovirus (BEV), goveđi koronavirus (BcoV), virus goveđe parainfluence tipa 3 (BPIV-3), virus gljivične ephemeralne groznice (BEFV) i goveđi respiratorni sincicijski virus (BRSV). Učinkovitost kombinacije navedenih metoda istražena je i s obzirom na usporedbu osjetljivosti odnosno točnosti koja se dobiva uporabom RT-PCR metode. Od 284 skupna uzorka mlijeka iz spremnika, kombinacijom metoda umnožene rekombinazne polimeraze i test-traka za „lateral flow“ analizu utvrđen je 51 pozitivan uzorak, a RT-PCR 52 pozitivna uzorka. Stopa podudarnosti između navedenih metoda bila je 97,54 % (277/284)

    Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective

    Full text link
    Predicting molecular properties (e.g., atomization energy) is an essential issue in quantum chemistry, which could speed up much research progress, such as drug designing and substance discovery. Traditional studies based on density functional theory (DFT) in physics are proved to be time-consuming for predicting large number of molecules. Recently, the machine learning methods, which consider much rule-based information, have also shown potentials for this issue. However, the complex inherent quantum interactions of molecules are still largely underexplored by existing solutions. In this paper, we propose a generalizable and transferable Multilevel Graph Convolutional neural Network (MGCN) for molecular property prediction. Specifically, we represent each molecule as a graph to preserve its internal structure. Moreover, the well-designed hierarchical graph neural network directly extracts features from the conformation and spatial information followed by the multilevel interactions. As a consequence, the multilevel overall representations can be utilized to make the prediction. Extensive experiments on both datasets of equilibrium and off-equilibrium molecules demonstrate the effectiveness of our model. Furthermore, the detailed results also prove that MGCN is generalizable and transferable for the prediction.Comment: The 33rd AAAI Conference on Artificial Intelligence (AAAI'2019), Honolulu, USA, 201

    Block copolymer synthesis by controlled/living radical polymerisation in heterogeneous systems

    Full text link

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Rapid detection of infectious bovine Rhinotracheitis virus using recombinase polymerase amplification assays

    No full text
    Abstract Background Infectious bovine rhinotracheitis virus (IBRV) is a major pathogen in cattle and has led to significant economic losses to the dairy industry worldwide, and therefore a more optimal method for the rapid diagnosis of IBRV infection is highly needed. In this study, we described the development of a lateral flow dipstrip (LFD) of isothermal recombinase polymerase amplification (RPA) method for rapid detection of IBRV. Methods Distinct regions were selected as a candidate target for designing the LFD-RPA primers and probes. The analytical sensitivity of the RPA assay was determined using ten-fold serially diluted IBRV DNA. The specificity of the assay was assessed with other viral pathogens of cattle with similar clinic and other herpesviruses. The clinical performance was evaluated by testing 106 acute-phase high fever clinical specimens. Results RPA primers and probe were designed to target the specific conserved UL52 region fragment of IBRV. The detection could be completed at a constant temperature of 38 °C for 25 min, and the amplification products were easily visualized on a simple LFD. The detection limit of this assay was 5 copies per reaction of IBRV DNA and there was no cross-reactivity with other viruses causing bovine gastrointestinal and respiratory infections or other herpesviruses. The assay performance on acute-phase high fever clinical samples collected from cattle with no vaccine against IBRV, which were suspected to be infected with IBRV, was validated by detecting 24 fecal, 36 blood, 38 nasal swab and 8 tissue specimens, and compared with SYBR Green I based real-time PCR. The coincidence between IBRV LFD-RPA and real-time PCR was 100%. Conclusion IBRV LFD-RPA was fast and much easier to serve as an alternative to the common measures used for IBRV diagnosis, as there is reduction in the use of instruments for identification of the infected animals. In addition, this assay may be the potential candidate to be used as point-of-care diagnostics in the field

    Development of a recombinase polymerase amplification combined with a lateral flow dipstick assay for rapid detection of the Mycoplasma bovis

    No full text
    Abstract Background Mycoplasma bovis (M. bovis) is a major etiological agent of bovine mycoplasmosis around the world. Point-of-care testing in the field is lacking owing to the requirement for a simple, robust field applicable test that does not require professional laboratory equipment. The recombinase polymerase amplification (RPA) technique has become a promising isothermal DNA amplify assay for use in rapid and low-resource diagnostics. Results Here, a method for specific detection of M. bovis DNA was established, which was RPA combined with lateral flow dipstick (LFD). First, the analytical specificity and sensitivity of the RPA primer and LF-probe sets were evaluated. The assay successfully detected M. bovis DNA in 30 min at 39 °C, with detection limit of 20 copies per reaction, which it was compared the real-time quantitative PCR (qPCR) assay. This method was specific because it did not detect a selection of other bacterial pathogens in cattle. Both qPCR and RPA-LFD assays were used to detect M. bovis 442 field samples from 42 different dairy farms in Shandong Province of China, also the established RPA-LFD assay obtained 99.00% sensitivity, 95.61% specificity, and 0.902 kappa coefficient compared with the qPCR. Conclusions To the author’s knowledge, this is the first report using an RPA-FLD assay to visualise and detect M. bovis. Comparative analysis with qPCR indicates the potential of this assay for rapid diagnosis of bovine mycoplasmosis in resource limited settings

    Additional file 1: Figure S1. of Biopanning of polypeptides binding to bovine ephemeral fever virus G1 protein from phage display peptide library

    No full text
    Schematic drawing of BEFV G and the points linked to the primers of cloned G1 used. (A) The number of amino acids region about full length G gene and Region G1 (from 390 aa–529 aa) were indicated. (B) Presentation of G1 nucleotides sized and gene sequence amplification locus and positions of the forward (G1-F) and reversed (G1-R) primers used in this study. (TIFF 11694 kb
    corecore