1,105 research outputs found
Low-light-level nonlinear optics with slow light
Electromagnetically induced transparency in an optically thick, cold medium
creates a unique system where pulse-propagation velocities may be orders of
magnitude less than and optical nonlinearities become exceedingly large. As
a result, nonlinear processes may be efficient at low-light levels. Using an
atomic system with three, independent channels, we demonstrate a quantum
interference switch where a laser pulse with an energy density of
photons per causes a 1/e absorption of a second pulse.Comment: to be published in PR
Observations of Coronal Mass Ejections with the Coronal Multichannel Polarimeter
The Coronal Multichannel Polarimeter (CoMP) measures not only the
polarization of coronal emission, but also the full radiance profiles of
coronal emission lines. For the first time, CoMP observations provide
high-cadence image sequences of the coronal line intensity, Doppler shift and
line width simultaneously in a large field of view. By studying the Doppler
shift and line width we may explore more of the physical processes of CME
initiation and propagation. Here we identify a list of CMEs observed by CoMP
and present the first results of these observations. Our preliminary analysis
shows that CMEs are usually associated with greatly increased Doppler shift and
enhanced line width. These new observations provide not only valuable
information to constrain CME models and probe various processes during the
initial propagation of CMEs in the low corona, but also offer a possible
cost-effective and low-risk means of space weather monitoring.Comment: 6 figures. Will appear in the special issue of Coronal Magnetism,
Sol. Phy
A Study of Parton Energy Loss in Au+Au Collisions at RHIC using Transport Theory
Parton energy loss in Au+Au collisions at RHIC energies is studied by
numerically solving the relativistic Boltzmann equation for the partons
including and collision
processes. Final particle spectra are obtained using two hadronization models;
the Lund string fragmentation and independent fragmentation models. Recent,
preliminary transverse momentum distributions from central Au+Au
collisions at RHIC are reproduced using gluon-gluon scattering cross sections
of 5-12 mb, depending upon the hadronization model. Comparisons with the HIJING
jet quenching algorithm are made.Comment: 6 pages, 6 figures, attached files are replaced (wrong files were
uploaded in version 1
Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes
Due to its large surface area and strongly attractive potential, a bundle of
carbon nanotubes is an ideal substrate material for gas storage. In addition,
adsorption in nanotubes can be exploited in order to separate the components of
a mixture. In this paper, we investigate the preferential adsorption of D_2
versus H_2(isotope selectivity) and of ortho versus para(spin selectivity)
molecules confined in the one-dimensional grooves and interstitial channels of
carbon nanotube bundles. We perform selectivity calculations in the low
coverage regime, neglecting interactions between adsorbate molecules. We find
substantial spin selectivity for a range of temperatures up to 100 K, and even
greater isotope selectivity for an extended range of temperatures,up to 300 K.
This isotope selectivity is consistent with recent experimental data, which
exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed
in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure
How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs
We intend to provide a comprehensive answer to the question on whether all
Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we
present a synthesis of the LASCO CME observations over the last sixteen years,
assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic
observations from STEREO and SDO, and statistics from a revised LASCO CME
database. We argue that the bright loop often seen as the CME leading edge is
the result of pileup at the boundary of the erupting flux rope irrespective of
whether a cavity or, more generally, a 3-part CME can be identified. Based on
our previous work on white light shock detection and supported by the MHD
simulations, we identify a new type of morphology, the `two-front' morphology.
It consists of a faint front followed by diffuse emission and the bright
loop-like CME leading edge. We show that the faint front is caused by density
compression at a wave (or possibly shock) front driven by the CME. We also
present high-detailed multi-wavelength EUV observations that clarify the
relative positioning of the prominence at the bottom of a coronal cavity with
clear flux rope structure. Finally, we visually check the full LASCO CME
database for flux rope structures. In the process, we classify the events into
two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear
structure). We find that at least 40% of the observed CMEs have clear flux rope
structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a
coherent magnetic, twist-carrying coronal structure with angular width of at
least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a
few minutes to several hours. We conclude that flux ropes are a common
occurrence in CMEs and pose a challenge for future studies to identify CMEs
that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue
"Flux Rope Structure of CMEs
Observation of the Decays B0->K+pi-pi0 and B0->rho-K+
We report the observation of B^0 decays to the K^+pi^-pi^0 final state using
a data sample of 78 fb^-1 collected by the Belle detector at the KEKB e^+e^-
collider. With no assumptions about intermediate states in the decay, the
branching fraction is measured to be (36.6^{+4.2}_{-4.3}+- 3.0)*10^-6.We also
search for B decays to intermediate two-body states with the same K^+pi^-pi^0
final state. Significant B signals are observed in the rho(770)^- K^+ and
K^*(892)^+pi^- channels, with branching fractions of
(15.1^{+3.4+1.4+2.0}_{-3.3-1.5-2.1})* 10^-6 and
(14.8^{+4.6+1.5+2.4}_{-4.4-1.0-0.9})* 10^-6, respectively. The first error is
statistical, the second is systematic and the third is due to the largest
possible interference. Contributions from other possible two-body states will
be discussed. No CP asymmetry is found in the inclusive K^+pi^-pi^0 or rho^-K^+
modes, and we set 90% confidence level bounds on the asymmetry of
-0.12<A_{CP}<0.26 and -0.18<A_{CP}<0.64, respectively.Comment: 18 pages, 7 figure
Strong Phases and Factorization for Color Suppressed Decays
We prove a factorization theorem in QCD for the color suppressed decays B0->
D0 M0 and B0-> D*0 M0 where M is a light meson. Both the color-suppressed and
W-exchange/annihilation amplitudes contribute at lowest order in LambdaQCD/Q
where Q={mb, mc, Epi}, so no power suppression of annihilation contributions is
found. A new mechanism is given for generating non-perturbative strong phases
in the factorization framework. Model independent predictions that follow from
our results include the equality of the B0 -> D0 M0 and B0 -> D*0 M0 rates, and
equality of non-perturbative strong phases between isospin amplitudes,
delta(DM) = delta(D*M). Relations between amplitudes and phases for M=pi,rho
are also derived. These results do not follow from large Nc factorization with
heavy quark symmetry.Comment: 38 pages, 6 figs, typos correcte
Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions
We study the beam-energy and system-size dependence of \phi meson production
(using the hadronic decay mode \phi -- K+K-) by comparing the new results from
Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4
and 200 GeV measured in the STAR experiment at RHIC. Data presented are from
mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the
transverse momentum distributions for \phi mesons are observed to be similar in
yield and shape for Cu+Cu and Au+Au colliding systems with similar average
numbers of participating nucleons. The \phi meson yields in nucleus-nucleus
collisions, normalised by the average number of participating nucleons, are
found to be enhanced relative to those from p+p collisions with a different
trend compared to strange baryons. The enhancement for \phi mesons is observed
to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations
for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision
energies, the source of enhancement of strange hadrons is related to the
formation of a dense partonic medium in high energy nucleus-nucleus collisions
and cannot be alone due to canonical suppression of their production in smaller
systems.Comment: 20 pages and 5 figure
Flux-rope twist in eruptive flares and CMEs : due to zipper and main-phase reconnection
Funding: UK Science and Technology Facilities CouncilThe nature of three-dimensional reconnection when a twisted flux tube erupts during an eruptive flare or coronal mass ejection is considered. The reconnection has two phases: first of all, 3D “zipper reconnection” propagates along the initial coronal arcade, parallel to the polarity inversion line (PIL); then subsequent quasi-2D “main phase reconnection” in the low corona around a flux rope during its eruption produces coronal loops and chromospheric ribbons that propagate away from the PIL in a direction normal to it. One scenario starts with a sheared arcade: the zipper reconnection creates a twisted flux rope of roughly one turn (2π radians of twist), and then main phase reconnection builds up the bulk of the erupting flux rope with a relatively uniform twist of a few turns. A second scenario starts with a pre-existing flux rope under the arcade. Here the zipper phase can create a core with many turns that depend on the ratio of the magnetic fluxes in the newly formed flare ribbons and the new flux rope. Main phase reconnection then adds a layer of roughly uniform twist to the twisted central core. Both phases and scenarios are modeled in a simple way that assumes the initial magnetic flux is fragmented along the PIL. The model uses conservation of magnetic helicity and flux, together with equipartition of magnetic helicity, to deduce the twist of the erupting flux rope in terms the geometry of the initial configuration. Interplanetary observations show some flux ropes have a fairly uniform twist, which could be produced when the zipper phase and any pre-existing flux rope possess small or moderate twist (up to one or two turns). Other interplanetary flux ropes have highly twisted cores (up to five turns), which could be produced when there is a pre-existing flux rope and an active zipper phase that creates substantial extra twist.PostprintPublisher PDFPeer reviewe
- …