90 research outputs found

    New Insights into HTLV-1 Particle Structure, Assembly, and Gag-Gag Interactions in Living Cells

    Get PDF
    Human T-cell leukemia virus type 1 (HTLV-1) has a reputation for being extremely difficult to study in cell culture. The challenges in propagating HTLV-1 has prevented a rigorous analysis of how these viruses replicate in cells, including the detailed steps involved in virus assembly. The details for how retrovirus particle assembly occurs are poorly understood, even for other more tractable retroviral systems. Recent studies on HTLV-1 using state-of-the-art cryo-electron microscopy and fluorescence-based biophysical approaches explored questions related to HTLV-1 particle size, Gag stoichiometry in virions, and Gag-Gag interactions in living cells. These results provided new and exciting insights into fundamental aspects of HTLV-1 particle assembly—which are distinct from those of other retroviruses, including HIV-1. The application of these and other novel biophysical approaches promise to provide exciting new insights into HTLV-1 replication

    Biophysical analysis of HTLV-1 particles reveals novel insights into particle morphology and Gag stoichiometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human T-lymphotropic virus type 1 (HTLV-1) is an important human retrovirus that is a cause of adult T-cell leukemia/lymphoma. While an important human pathogen, the details regarding virus replication cycle, including the nature of HTLV-1 particles, remain largely unknown due to the difficulties in propagating the virus in tissue culture. In this study, we created a codon-optimized HTLV-1 Gag fused to an <it>EYFP </it>reporter as a model system to quantitatively analyze HTLV-1 particles released from producer cells.</p> <p>Results</p> <p>The codon-optimized Gag led to a dramatic and highly robust level of Gag expression as well as virus-like particle (VLP) production. The robust level of particle production overcomes previous technical difficulties with authentic particles and allowed for detailed analysis of particle architecture using two novel methodologies. We quantitatively measured the diameter and morphology of HTLV-1 VLPs in their native, hydrated state using cryo-transmission electron microscopy (cryo-TEM). Furthermore, we were able to determine HTLV-1 Gag stoichiometry as well as particle size with the novel biophysical technique of fluorescence fluctuation spectroscopy (FFS). The average HTLV-1 particle diameter determined by cryo-TEM and FFS was 71 ± 20 nm and 75 ± 4 nm, respectively. These values are significantly smaller than previous estimates made of HTLV-1 particles by negative staining TEM. Furthermore, cryo-TEM reveals that the majority of HTLV-1 VLPs lacks an ordered structure of the Gag lattice, suggesting that the HTLV-1 Gag shell is very likely to be organized differently compared to that observed with HIV-1 Gag in immature particles. This conclusion is supported by our observation that the average copy number of HTLV-1 Gag per particle is estimated to be 510 based on FFS, which is significantly lower than that found for HIV-1 immature virions.</p> <p>Conclusions</p> <p>In summary, our studies represent the first quantitative biophysical analysis of HTLV-1-like particles and reveal novel insights into particle morphology and Gag stochiometry.</p

    Quantization and Compressive Sensing

    Get PDF
    Quantization is an essential step in digitizing signals, and, therefore, an indispensable component of any modern acquisition system. This book chapter explores the interaction of quantization and compressive sensing and examines practical quantization strategies for compressive acquisition systems. Specifically, we first provide a brief overview of quantization and examine fundamental performance bounds applicable to any quantization approach. Next, we consider several forms of scalar quantizers, namely uniform, non-uniform, and 1-bit. We provide performance bounds and fundamental analysis, as well as practical quantizer designs and reconstruction algorithms that account for quantization. Furthermore, we provide an overview of Sigma-Delta (ΣΔ\Sigma\Delta) quantization in the compressed sensing context, and also discuss implementation issues, recovery algorithms and performance bounds. As we demonstrate, proper accounting for quantization and careful quantizer design has significant impact in the performance of a compressive acquisition system.Comment: 35 pages, 20 figures, to appear in Springer book "Compressed Sensing and Its Applications", 201

    New species in Aspergillus section Terrei

    Get PDF
    Section Terrei of Aspergillus was studied using a polyphasic approach including sequence analysis of parts of the β-tubulin and calmodulin genes and the ITS region, macro- and micromorphological analyses and examination of extrolite profiles to describe three new species in this section. Based on phylogenetic analysis of calmodulin and β-tubulin sequences seven lineages were observed among isolates that have previously been treated as A. terreus and its subspecies by Raper & Fennell (1965) and others. Aspergillus alabamensis, A. terreus var. floccosus, A. terreus var. africanus, A. terreus var. aureus, A. hortai and A. terreus NRRL 4017 all represent distinct lineages from the A. terreus clade. Among them, A. terreus var. floccosus, A. terreus NRRL 4017 and A. terreus var. aureus could also be distinguished from A. terreus by using ITS sequence data. New names are proposed for A. terreus var. floccosus, A. terreus var. africanus, A. terreus var. aureus, while Aspergillus hortai is recognised at species level. Aspergillus terreus NRRL 4017 is described as the new species A. pseudoterreus. Also included in section Terrei are some species formerly placed in sections Flavipedes and Versicolores. A. clade including the type isolate of A. niveus (CBS 115.27) constitutes a lineage closely related to A. carneus. Fennellia nivea, the hypothesized teleomorph is not related to this clade. Aspergillus allahabadii, A. niveus var. indicus, and two species originally placed in section Versicolores, A. ambiguus and A. microcysticus, also form well-defined lineages on all trees. Species in Aspergillus section Terrei are producers of a diverse array of secondary metabolites. However, many of the species in the section produce different combinations of the following metabolites: acetylaranotin, asperphenamate, aspochalamins, aspulvinones, asteltoxin, asterric acid, asterriquinones, aszonalenins, atrovenetins, butyrolactones, citreoisocoumarins, citreoviridins, citrinins, decaturins, fulvic acid, geodins, gregatins, mevinolins, serantrypinone, terreic acid (only the precursor 3,6-dihydroxytoluquinone found), terreins, terrequinones, terretonins and territrems. The cholesterol-lowering agent mevinolin was found in A. terreus and A. neoafricanus only. The hepatotoxic extrolite citrinin was found in eight species: A. alabamensis, A. allahabadii, A. carneus, A. floccosus, A. hortai, A. neoindicus, A. niveus and A. pseudoterreus. The neurotoxic extrolite citreoviridin was found in five species: A. neoafricanus, A. aureoterreus, A. pseudoterreus, A. terreus and A. neoniveus. Territrems, tremorgenic extrolites, were found in some strains of A. alabamensis and A. terreus

    Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood

    Get PDF
    Background: Insulin, a pleotrophic hormone, has diverse effects in the body. Recent work has highlighted the important role of insulin's action in the nervous system on glucose and energy homeostasis, memory, and mood. Scope of review: Here we review experimental and clinical work that has broadened the understanding of insulin's diverse functions in the central and peripheral nervous systems, including glucose and body weight homeostasis, memory and mood, with particular emphasis on intranasal insulin. Major conclusions: Implications for the treatment of obesity, type 2 diabetes, dementia, and mood disorders are discussed in the context of brain insulin action. Intranasal insulin may have potential in the treatment of central nervous system-related metabolic disorders. Keywords: Insulin, Intranasal insulin, Memory, Metabolism, Moo

    New Analysis of Manifold Embeddings and Signal Recovery from Compressive Measurements

    Get PDF
    Compressive Sensing (CS) exploits the surprising fact that the information contained in a sparse signal can be preserved in a small number of compressive, often random linear measurements of that signal. Strong theoretical guarantees have been established concerning the embedding of a sparse signal family under a random measurement operator and on the accuracy to which sparse signals can be recovered from noisy compressive measurements. In this paper, we address similar questions in the context of a different modeling framework. Instead of sparse models, we focus on the broad class of manifold models, which can arise in both parametric and non-parametric signal families. Using tools from the theory of empirical processes, we improve upon previous results concerning the embedding of low-dimensional manifolds under random measurement operators. We also establish both deterministic and probabilistic instance-optimal bounds in 2\ell_2 for manifold-based signal recovery and parameter estimation from noisy compressive measurements. In line with analogous results for sparsity-based CS, we conclude that much stronger bounds are possible in the probabilistic setting. Our work supports the growing evidence that manifold-based models can be used with high accuracy in compressive signal processing.Comment: arXiv admin note: substantial text overlap with arXiv:1002.124

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore