3,370 research outputs found

    Toxicity risk of non-target organs at risk receiving low-dose radiation: case report

    Get PDF
    The spine is the most common site for bone metastases. Radiation therapy is a common treatment for palliation of pain and for prevention or treatment of spinal cord compression. Helical tomotherapy (HT), a new image-guided intensity modulated radiotherapy (IMRT), delivers highly conformal dose distributions and provides an impressive ability to spare adjacent organs at risk, thus increasing the local control of spinal column metastases and decreasing the potential risk of critical organs under treatment. However, there are a lot of non-target organs at risk (OARs) occupied by low dose with underestimate in this modern rotational IMRT treatment. Herein, we report a case of a pathologic compression fracture of the T9 vertebra in a 55-year-old patient with cholangiocarcinoma. The patient underwent HT at a dose of 30 Gy/10 fractions delivered to T8-T10 for symptom relief. Two weeks after the radiotherapy had been completed, the first course of chemotherapy comprising gemcitabine, fluorouracil, and leucovorin was administered. After two weeks of chemotherapy, however, the patient developed progressive dyspnea. A computed tomography scan of the chest revealed an interstitial pattern with traction bronchiectasis, diffuse ground-glass opacities, and cystic change with fibrosis. Acute radiation pneumonitis was diagnosed. Oncologists should be alert to the potential risk of radiation toxicities caused by low dose off-targets and abscopal effects even with highly conformal radiotherapy

    Improving Success Rates of Percutaneous Coronary Intervention for Chronic Total Occlusion at a Rural Hospital in East Taiwan

    Get PDF
    SummaryBackgroundWe aimed to report the results of percutaneous coronary intervention for chronic total occlusion (CTO) in a remote hospital of southeast Taiwan that does not have on-site coronary artery bypass graft support and has insufficient medical resources.MethodsFrom 2006 to 2009, we identified 96 patients who underwent percutaneous coronary intervention and whose coronary angiogram showed CTO lesions. On-site cardiovascular surgeons were unavailable from 2006 to 2009.ResultsThe success rate (test for trend, p = 0.02) and numbers of guidewires used (test for trend, p = 0.59) significantly increased from 2006 to 2009, and the procedural time reduced significantly (test for trend, p = 0.001). The volume of contrast media injected decreased, although this result was not statistically significant (p = 0.70).ConclusionOur experience in managing CTO lesions substantially improved and the procedural time reduced over 4 years, even when constrained by a relative shortage of medical resources

    Effects of Noise Electrical Stimulation on Proprioception, Force Control, and Corticomuscular Functional Connectivity

    Get PDF
    Sensory afferent inputs play an important role in neuromuscular functions. Subsensory level noise electrical stimulation enhances the sensitivity of peripheral sensory system and improves lower extremity motor function. The current study aimed to investigate the immediate effects of noise electrical stimulation on proprioceptive senses and grip force control, and whether there are associated neural activities in the central nervous system. Fourteen healthy adults participated in 2 experiments on 2 different days. In day 1, participants performed grip force and joint proprioceptive tasks with and without (sham) noise electrical stimulation. In day 2, participants performed grip force steady hold task before and after 30-min noise electrical stimulation. Noise stimulation was applied with surface electrodes secured along the course of the median nerve and proximal to the coronoid fossa EEG power spectrum density of bilateral sensorimotor cortex and coherence between EEG and finger flexor EMG were calculated and compared. Wilcoxon Signed-Rank Tests were used to compare the differences of proprioception, force control, EEG power spectrum density and EEG-EMG coherence between noise electrical stimulation and sham conditions. The significance level (alpha) was set at 0.05. Our study found that noise stimulation with optimal intensity could improve both force and joint proprioceptive senses. Furthermore, individuals with higher gamma coherence showed better force proprioceptive sense improvement with 30-min noise electrical stimulation. These observations indicate the potential clinical benefits of noise stimulation on individuals with impaired proprioceptive senses and the characteristics of individuals who might benefit from noise stimulation

    Adaptor protein Shc acts as an immune-regulator for the LPS-stimulated maturation of bone marrow-derived dendritic cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Shc isoforms is known to mediate immune responses and has been indicated as a negative regulator of autoimmunity and lymphocyte activation. We aimed to evaluate the immune-regulatory role of Shc in rat bone marrow-derived DCs in the maturation process triggered by LPS.</p> <p>Results</p> <p>We found that, in response to LPS, expression of Shc proteins was induced and that neutralization of Shc inhibited the LPS-induced transient phosphorylation of p52Shc on pTyr239/240 in DCs of Lewis (LEW; RT1<sup>l</sup>) rats. Moreover, the significantly enhanced expression of IL-10 and the surface level of costimulatory molecule CD80, as well as suppressed expression of IL-6 and IL-12 in the Shc-silenced DCs were also observed. Similar IκB phosphorylation occurred in Shc-silenced DCs primed by LPS, indicating Shc is not associated with NF-κB pathway. We further demonstrate that Shc blockade on LPS-treated DCs results in significant increase of the overall STAT3 phosphorylation and the relative levels of phospho-STAT3 in the nuclear fraction. STAT3 activation by LPS with or without Shc blockade was totally abolished by SU6656, a selective Src family kinases inhibitor, underscoring the critical role of Src-mediated activation.</p> <p>Conclusions</p> <p>We conclude that Shc blockade in LPS-primed DC leads to the development of tolerogenic DC via Src-dependent STAT3 activation and that adaptor protein Shc might play a pivotal role in mediating immunogenic and tolerogenic properties of DCs.</p

    The Vibrio cholerae var regulon encodes a metallo-β-lactamase and an antibiotic efflux pump, which are regulated by VarR, a LysR-type transcription factor

    Get PDF
    The genome sequence of V. cholerae O1 Biovar Eltor strain N16961 has revealed a putative antibiotic resistance (var) regulon that is predicted to encode a transcriptional activator (VarR), which is divergently transcribed relative to the putative resistance genes for both a metallo-β-lactamase (VarG) and an antibiotic efflux-pump (VarABCDEF). We sought to test whether these genes could confer antibiotic resistance and are organised as a regulon under the control of VarR. VarG was overexpressed and purified and shown to have β-lactamase activity against penicillins, cephalosporins and carbapenems, having the highest activity against meropenem. The expression of VarABCDEF in the Escherichia coli (ΔacrAB) strain KAM3 conferred resistance to a range of drugs, but most significant resistance was to the macrolide spiramycin. A gel-shift analysis was used to determine if VarR bound to the promoter regions of the resistance genes. Consistent with the regulation of these resistance genes, VarR binds to three distinct intergenic regions, varRG, varGA and varBC located upstream and adjacent to varG, varA and varC, respectively. VarR can act as a repressor at the varRG promoter region; whilst this repression was relieved upon addition of β-lactams, these did not dissociate the VarR/varRG-DNA complex, indicating that the de-repression of varR by β-lactams is indirect. Considering that the genomic arrangement of VarR-VarG is strikingly similar to that of AmpR-AmpC system, it is possible that V. cholerae has evolved a system for resistance to the newer β-lactams that would prove more beneficial to the bacterium in light of current selective pressures

    Physical ergonomics in peripheral nerve block

    Get PDF
    The understanding of ergonomics is a vital competency for all peripheral nerve block operators. The essence of physical ergonomics for peripheral nerve block procedures can be summarised into three significant components: brain, musculoskeletal and needling. The first component includes strategies to optimise visuospatial neuroprocessing using equipment configuration. The second component reflects the careful planning of posture and position to improve procedural technique and reduce physical fatigue. The final component focuses on strategies to achieve needle beam alignment for optimal needle visualisation

    Precise determination of seawater calcium using isotope dilution inductively coupled plasma mass spectrometry

    Get PDF
    NSC, TaiwanWe describe a method for rapid, precise and accurate determination of calcium ion (Ca2+) concentration in seawater using isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). A 10 mu L aliquot of seawater was spiked with an appropriate Ca-43 enriched solution for Ca-44/Ca-43 ID-ICP-MS analyses, using an Element XR (Thermo Fisher Scientific), operated at low resolution in E-scan acquisition mode. A standard-sample bracketing technique was applied to correct for potential mass discrimination and ratio drift at every 5 samples. A precision of better than 0.05% for within-run and 0.10% for duplicate measurements of the IAPSO seawater standard was achieved using 10 mu L solutions with a measuring time less than 3 minutes. Depth profiles of seawater samples collected from the Arctic Ocean basin were processed and compared with results obtained by the classic ethylene glycol tetra-acetic acid (EGTA) titration. Our new ID-ICP-MS data agreed closely with the conventional EGTA data, with the latter consistently displaying 1.5% excess Ca2+ values, possibly due to a contribution of interference from Mg2+ and Sr2+ in the EGTA titration. The newly obtained Sr/Ca profiles reveal sensitive water mass mixing in the upper oceanic column to reflect ice melting in the Arctic region. This novel technique provides a tool for seawater Ca2+ determination with small sample size, high throughput, excellent internal precision and external reproducibility

    Optimization of extraction conditions and enhancement of phenolic content and antioxidant activity of pearl millet fermented with Aspergillus awamori MTCC-548

    Get PDF
    AbstractThe present study envisaged two stage optimization of conditions using RSM for extraction of total phenolic compounds from pearl millet koji prepared with Aspergillus awamori. Antioxidant activity was determined by employing DPPH and radical cation of ABTS. In phase-1, fermentation time (5–8 days), extraction temperature (40–60 °C), extraction time (45–60 min.) and solvent (ethanol, 50%; 0.5 ml HCL + 99.5 ml methanol) were tested for maximizing extraction process. The optimum conditions of phenolic recovery were achieved at 8 days fermentation time, 40 °C extraction temperature, 45 min. extraction time with 50% ethanol as solvent, with values of 169.19 mg GAE/g for TPC, 262.7 VCEAC µmol/g for DPPH and 281.86 VCEAC µmol/g for ABTS. TPC were found to be positively correlated (p < 0.05) with DPPH and ABTS under these conditions. In phase-2, a central composite design was applied for design of experiments and model building using extraction time and extraction temperature as process variables for further maximizing the extraction of TPC. The optimized conditions using RSM for maximizing the extraction of total phenolic compounds were: ethanol concentration, 50%; extraction temperature, 44.5 °C and extraction time, 23.8 mins. Under these conditions, 176.82 mg GAE/g of total phenolic compounds were extracted which was very close to the predicted value of 173.2 mg GAE/g. The model was validated at these optimal points
    corecore