146 research outputs found

    Travelling waves in a tissue interaction model for skin pattern formation

    Get PDF
    Tissue interaction plays a major role in many morphogenetic processes, particularly those associated with skin organ primordia. We examine travelling wave solutions in a tissue interaction model for skin pattern formation which is firmly based on the known biology. From a phase space analysis we conjecture the existence of travelling waves with specific wave speeds. Subsequently, analytical approximations to the wave profiles are derived using perturbation methods. We then show numerically that such travelling wave solutions do exist and that they are in good agreement with our analytical results. Finally, the biological implications of our analysis are discussed

    Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors

    Get PDF
    Delta-9-tetrahydrocannabinol (THC), the main psychoactive compound of marijuana, induces numerous undesirable effects, including memory impairments, anxiety, and dependence. Conversely, THC also has potentially therapeutic effects, including analgesia, muscle relaxation, and neuroprotection. However, the mechanisms that dissociate these responses are still not known. Using mice lacking the serotonin receptor 5-HT2A, we revealed that the analgesic and amnesic effects of THC are independent of each other: while amnesia induced by THC disappears in the mutant mice, THC can still promote analgesia in these animals. In subsequent molecular studies, we showed that in specific brain regions involved in memory formation, the receptors for THC and the 5-HT2A receptors work together by physically interacting with each other. Experimentally interfering with this interaction prevented the memory deficits induced by THC, but not its analgesic properties. Our results highlight a novel mechanism by which the beneficial analgesic properties of THC can be dissociated from its cognitive side effects

    Effectiveness of Metyrapone in Treating Cushing's Syndrome: A Retrospective Multicenter Study in 195 Patients

    Get PDF
    Background: Cushing's syndrome (CS) is a severe condition with excess mortality and significant morbidity necessitating control of hypercortisolemia. There are few data documenting use of the steroidogenesis inhibitor metyrapone for this purpose. Objective: The objective was to assess the effectiveness of metyrapone in controlling cortisol excess in a contemporary series of patients with CS. Design: This was designed as a retrospective, multicenter study. Setting: Thirteen University hospitals were studied. Patients: We studied a total of 195 patients with proven CS: 115 Cushing's disease, 37 ectopic ACTH syndrome, 43 ACTH-independent disease (adrenocortical carcinoma 10, adrenal adenoma 30, and ACTH-independent adrenal hyperplasia 3). Measurements: Measurements included biochemical parameters of activity of CS: mean serum cortisol “day-curve” (CDC) (target 150–300 nmol/L); 9 am serum cortisol; 24-hour urinary free cortisol (UFC). Results: A total of 164/195 received metyrapone monotherapy. Mean age was 49.6 ± 15.7 years; mean duration of therapy 8 months (median 3 mo, range 3 d to 11.6 y). There were significant improvements on metyrapone, first evaluation to last review: CDC (91 patients, 722.9 nmol/L [26.2 μg/dL] vs 348.6 nmol/L [12.6 μg/dL]; P < .0001); 9 am cortisol (123 patients, 882.9 nmol/L [32.0 μg/dL] vs 491.1 nmol/L [17.8 μg/dL]; P < .0001); and UFC (37 patients, 1483 nmol/24 h [537 μg/24 h] vs 452.6 nmol/24 h [164 μg/24 h]; P = .003). Overall, control at last review: 55%, 43%, 46%, and 76% of patients who had CDCs, UFCs, 9 am cortisol less than 331 nmol/L (12.0 μg/dL), and 9 am cortisol less than upper limit of normal/600 nmol/L (21.7 μg/dL). Median final dose: Cushing's disease 1375 mg; ectopic ACTH syndrome 1500 mg; benign adrenal disease 750 mg; and adrenocortical carcinoma 1250 mg. Adverse events occurred in 25% of patients, mostly mild gastrointestinal upset and dizziness, usually within 2 weeks of initiation or dose increase, all reversible. Conclusions: Metyrapone is effective therapy for short- and long-term control of hypercortisolemia in CS

    A separated vortex ring underlies the flight of the dandelion

    Get PDF
    Wind-dispersed plants have evolved ingenious ways to lift their seeds1,2. The common dandelion uses a bundle of drag-enhancing bristles (the pappus) that helps to keep their seeds aloft. This passive flight mechanism is highly effective, enabling seed dispersal over formidable distances3,4; however, the physics underpinning pappus-mediated flight remains unresolved. Here we visualized the flow around dandelion seeds, uncovering an extraordinary type of vortex. This vortex is a ring of recirculating fluid, which is detached owing to the flow passing through the pappus. We hypothesized that the circular disk-like geometry and the porosity of the pappus are the key design features that enable the formation of the separated vortex ring. The porosity gradient was surveyed using microfabricated disks, and a disk with a similar porosity was found to be able to recapitulate the flow behaviour of the pappus. The porosity of the dandelion pappus appears to be tuned precisely to stabilize the vortex, while maximizing aerodynamic loading and minimizing material requirements. The discovery of the separated vortex ring provides evidence of the existence of a new class of fluid behaviour around fluid-immersed bodies that may underlie locomotion, weight reduction and particle retention in biological and manmade structures

    At What Stage of Neural Processing Does Cocaine Act to Boost Pursuit of Rewards?

    Get PDF
    Dopamine-containing neurons have been implicated in reward and decision making. One element of the supporting evidence is that cocaine, like other drugs that increase dopaminergic neurotransmission, powerfully potentiates reward seeking. We analyze this phenomenon from a novel perspective, introducing a new conceptual framework and new methodology for determining the stage(s) of neural processing at which drugs, lesions and physiological manipulations act to influence reward-seeking behavior. Cocaine strongly boosts the proclivity of rats to work for rewarding electrical brain stimulation. We show that the conventional conceptual framework and methods do not distinguish between three conflicting accounts of how the drug produces this effect: increased sensitivity of brain reward circuitry, increased gain, or decreased subjective reward costs. Sensitivity determines the stimulation strength required to produce a reward of a given intensity (a measure analogous to the KM of an enzyme) whereas gain determines the maximum intensity attainable (a measure analogous to the vmax of an enzyme-catalyzed reaction). To distinguish sensitivity changes from the other determinants, we measured and modeled reward seeking as a function of both stimulation strength and opportunity cost. The principal effect of cocaine was a two-fourfold increase in willingness to pay for the electrical reward, an effect consistent with increased gain or decreased subjective cost. This finding challenges the long-standing view that cocaine increases the sensitivity of brain reward circuitry. We discuss the implications of the results and the analytic approach for theories of how dopaminergic neurons and other diffuse modulatory brain systems contribute to reward pursuit, and we explore the implications of the conceptual framework for the study of natural rewards, drug reward, and mood

    Nanotools for Neuroscience and Brain Activity Mapping

    Get PDF
    Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function

    Tourism resilience in the context of integrated destination and disaster management (DM2)

    Get PDF
    The disaster management principles should be integrated into the destination management plans to enhance resilience of tourist destinations to natural disasters. The success of such integration depends on the extent of tourism stakeholder collaboration, but this topic remains understudied, especially in the Caribbean. This paper evaluates tourism resilience in Grenada. It finds that local tourism stakeholders are well aware of the potential damage natural disasters can inflict on the destination but fail to develop effective measures to build destination-wide and organizational resilience. The paper proposes an action framework to aid tourism stakeholders in Grenada to more effectively plan for disasters
    corecore