103 research outputs found

    A new wavelength calibration for echelle spectrographs using Fabry-Perot etalons

    Full text link
    The study of Earth-mass extrasolar planets via the radial-velocity technique and the measurement of the potential cosmological variability of fundamental constants call for very-high-precision spectroscopy at the level of \updelta\lambda/\lambda<10^{-9}. Wavelength accuracy is obtained by providing two fundamental ingredients: 1) an absolute and information-rich wavelength source and 2) the ability of the spectrograph and its data reduction of transferring the reference scale (wavelengths) to a measurement scale (detector pixels) in a repeatable manner. The goal of this work is to improve the wavelength calibration accuracy of the HARPS spectrograph by combining the absolute spectral reference provided by the emission lines of a thorium-argon hollow-cathode lamp (HCL) with the spectrally rich and precise spectral information of a Fabry-P\'erot-based calibration source. On the basis of calibration frames acquired each night since the Fabry-P\'erot etalon was installed on HARPS in 2011, we construct a combined wavelength solution which fits simultaneously the thorium emission lines and the Fabry-P\'erot lines. The combined fit is anchored to the absolute thorium wavelengths, which provide the `zero-point' of the spectrograph, while the Fabry-P\'erot lines are used to improve the (spectrally) local precision. The obtained wavelength solution is verified for auto-consistency and tested against a solution obtained using the HARPS Laser-Frequency Comb (LFC). The combined thorium+Fabry-P\'erot wavelength solution shows significantly better performances compared to the thorium-only calibration. The presented techniques will therefore be used in the new HARPS and HARPS-N pipeline, and will be exported to the ESPRESSO spectrograph.Comment: 15 pages, 8 figure

    Consequences of spectrograph illumination for the accuracy of radial-velocimetry

    Full text link
    For fiber-fed spectrographs with a stable external wavelength source, scrambling properties of optical fibers and, homogeneity and stability of the instrument illumination are important for the accuracy of radial-velocimetry. Optical cylindric fibers are known to have good azimuthal scrambling. In contrast, the radial one is not perfect. In order to improve the scrambling ability of the fiber and to stabilize the illumination, optical double scrambler are usually coupled to the fibers. Despite that, our experience on SOPHIE and HARPS has lead to identified remaining radial-velocity limitations due to the non-uniform illumination of the spectrograph. We conducted tests on SOPHIE with telescope vignetting, seeing variation and centering errors on the fiber entrance. We simulated the light path through the instrument in order to explain the radial velocity variation obtained with our tests. We then identified the illumination stability and uniformity has a critical point for the extremely high-precision radial velocity instruments (ESPRESSO@VLT, CODEX@E-ELT). Tests on square and octagonal section fibers are now under development and SOPHIE will be used as a bench test to validate these new feed optics.Comment: to appear in the Proceedings conference "New Technologies for Probing the Diversity of Brown Dwarfs and Exoplanets", Shanghai, 200

    NIGHT: a compact, near-infrared, high-resolution spectrograph to survey helium in exoplanet systems

    Full text link
    Among highly irradiated exoplanets, some have been found to undergo significant hydrodynamic expansion traced by atmospheric escape. To better understand these processes in the context of planetary evolution, we propose NIGHT (the Near-Infrared Gatherer of Helium Transits). NIGHT is a high-resolution spectrograph dedicated to surveying and temporally monitoring He I triplet absorption at 1083nm in stellar and planetary atmospheres. In this paper, we outline our scientific objectives, requirements, and cost-efficient design. Our simulations, based on previous detections and modelling using the current exoplanet population, determine our requirements and survey targets. With a spectral resolution of 70,000 on a 2-meter telescope, NIGHT can accurately resolve the helium triplet and detect 1% peak absorption in 118 known exoplanets in a single transit. Additionally, it can search for three-sigma temporal variations of 0.4% in 66 exoplanets in-between two transits. These are conservative estimates considering the ongoing detections of transiting planets amenable to atmospheric characterisation. We find that instrumental stability at 40m/s, less stringent than for radial velocity monitoring, is sufficient for transmission spectroscopy in He I. As such, NIGHT can utilize mostly off-the-shelf components, ensuring cost-efficiency. A fibre-fed system allows for flexibility as a visitor instrument on a variety of telescopes, making it ideal for follow-up observations after JWST or ground-based detections. Over a few years of surveying, NIGHT could offer detailed insights into the mechanisms shaping the hot Neptune desert and close-in planet population by significantly expanding the statistical sample of planets with known evaporating atmospheres. First light is expected in 2024.Comment: 15 pages, 20 figures, this manuscript has been accepted for publication in MNRAS. This is a pre-copyedited, author-produced PD

    Deriving High-Precision Radial Velocities

    Full text link
    This chapter describes briefly the key aspects behind the derivation of precise radial velocities. I start by defining radial velocity precision in the context of astrophysics in general and exoplanet searches in particular. Next I discuss the different basic elements that constitute a spectrograph, and how these elements and overall technical choices impact on the derived radial velocity precision. Then I go on to discuss the different wavelength calibration and radial velocity calculation techniques, and how these are intimately related to the spectrograph's properties. I conclude by presenting some interesting examples of planets detected through radial velocity, and some of the new-generation instruments that will push the precision limit further.Comment: Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    Darwin -— an experimental astronomy mission to search for extrasolar planets

    Get PDF
    As a response to ESA call for mission concepts for its Cosmic Vision 2015–2025 plan, we propose a mission called Darwin. Its primary goal is the study of terrestrial extrasolar planets and the search for life on them. In this paper, we describe different characteristics of the instrument

    NGTS: a robotic transit survey to detect Neptune and Super-Earth mass planets

    Get PDF
    NGTS is a new ground-based transit survey aimed at detecting sub-Neptune sized exoplanets around bright stars. The instrument will be installed at the ESO Paranal observatory in order to benefit from the excellent observing conditions and follow-up synergy with the VLT and E-ELT. It will be a robotic facility composed of 12, 200 mm telescopes equipped with 2Kx2K NIR sensitive detectors. It is built on the legacy of the WASP experience

    Higher-precision radial velocity measurements with the SOPHIE spectrograph using octagonal-section fibers

    Full text link
    High-precision spectrographs play a key role in exoplanet searches using the radial velocity technique. But at the accuracy level of 1 m.s-1, required for super-Earth characterization, stability of fiber-fed spectrograph performance is crucial considering variable observing conditions such as seeing, guiding and centering errors and, telescope vignetting. In fiber-fed spectrographs such as HARPS or SOPHIE, the fiber link scrambling properties are one of the main issues. Both the stability of the fiber near-field uniformity at the spectrograph entrance and of the far-field illumination on the echelle grating (pupil) are critical for high-precision radial velocity measurements due to the spectrograph geometrical field and aperture aberrations. We conducted tests on the SOPHIE spectrograph at the 1.93-m OHP telescope to measure the instrument sensitivity to the fiber link light feeding conditions: star decentering, telescope vignetting by the dome,and defocussing. To significantly improve on current precision, we designed a fiber link modification considering the spectrograph operational constraints. We have developed a new link which includes a piece of octagonal-section fiber, having good scrambling properties, lying inside the former circular-section fiber, and we tested the concept on a bench to characterize near-field and far-field scrambling properties. This modification has been implemented in spring 2011 on the SOPHIE spectrograph fibers and tested for the first time directly on the sky to demonstrate the gain compared to the previous fiber link. Scientific validation for exoplanet search and characterization has been conducted by observing standard stars.Comment: 12 pages, 9 figures, Proceedings of SPIE 201

    The ESPRI project: astrometric exoplanet search with PRIMA I. Instrument description and performance of first light observations

    Full text link
    The ESPRI project relies on the astrometric capabilities offered by the PRIMA facility of the Very Large Telescope Interferometer for the discovery and study of planetary systems. Our survey consists of obtaining high-precision astrometry for a large sample of stars over several years and to detect their barycentric motions due to orbiting planets. We present the operation principle, the instrument's implementation, and the results of a first series of test observations. A comprehensive overview of the instrument infrastructure is given and the observation strategy for dual-field relative astrometry is presented. The differential delay lines, a key component of the PRIMA facility which was delivered by the ESPRI consortium, are described and their performance within the facility is discussed. Observations of bright visual binaries are used to test the observation procedures and to establish the instrument's astrometric precision and accuracy. The data reduction strategy for astrometry and the necessary corrections to the raw data are presented. Adaptive optics observations with NACO are used as an independent verification of PRIMA astrometric observations. The PRIMA facility was used to carry out tests of astrometric observations. The astrometric performance in terms of precision is limited by the atmospheric turbulence at a level close to the theoretical expectations and a precision of 30 micro-arcseconds was achieved. In contrast, the astrometric accuracy is insufficient for the goals of the ESPRI project and is currently limited by systematic errors that originate in the part of the interferometer beamtrain which is not monitored by the internal metrology system. Our observations led to the definition of corrective actions required to make the facility ready for carrying out the ESPRI search for extrasolar planets.Comment: 32 pages, 39 figures, Accepted for publication in Astronomy and Astrophysic

    Could we identify hot Ocean-Planets with CoRoT, Kepler and Doppler velocimetry?

    Get PDF
    Planets less massive than about 10 MEarth are expected to have no massive H-He atmosphere and a cometary composition (50% rocks, 50% water, by mass) provided they formed beyond the snowline of protoplanetary disks. Due to inward migration, such planets could be found at any distance between their formation site and the star. If migration stops within the habitable zone, this will produce a new kind of planets, called Ocean-Planets. Ocean-planets typically consist in a silicate core, surrounded by a thick ice mantle, itself covered by a 100 km deep ocean. The existence of ocean-planets raises important astrobiological questions: Can life originate on such body, in the absence of continent and ocean-silicate interfaces? What would be the nature of the atmosphere and the geochemical cycles ? In this work, we address the fate of Hot Ocean-Planets produced when migration ends at a closer distance. In this case the liquid/gas interface can disappear, and the hot H2O envelope is made of a supercritical fluid. Although we do not expect these bodies to harbor life, their detection and identification as water-rich planets would give us insight as to the abundance of hot and, by extrapolation, cool Ocean-Planets.Comment: 47 pages, 6 Fugures, regular paper. Submitted to Icaru
    • …
    corecore