11 research outputs found

    Basal forebrain-cortical circuits in rodents. Implications of anatomical pathways and cel toxicity in Alzheimer's disease

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Anatomía, Histología y Neurociencia. Fecha de lectura: 18-09-2017Esta tesis tiene embargado el acceso al texto completo hasta el 18-03-201

    Modulation of specific sensory cortical areas by segregated basal forebrain cholinergic neurons demonstrated by neuronal tracing and optogenetic stimulation in mice

    Get PDF
    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated pools of neurons that may modulate specific cortical areas.This work was supported by a Grant from Ministerio de Economia y Competitividad ( BFU2012–36107

    Basal forebrain nuclei display distinct projecting pathways and functional circuits to sensory primary and prefrontal cortices in the rat

    Get PDF
    Recent evidence supports that specific projections between different basal forebrain (BF) nuclei and their cortical targets are necessary to modulate cognitive functions in the cortex. We tested the hypothesis of the existence of specific neuronal populations in the BF linking with specific sensory, motor, and prefrontal cortices in rats. Neuronal tracing techniques were performed using retrograde tracers injected in the primary somatosensory (S1), auditory (A1), and visual (V1) cortical areas, in the medial prefrontal cortex (mPFC) as well as in BF nuclei. Results indicate that the vertical and horizontal diagonal band of Broca (VDB/HDB) nuclei target specific sensory cortical areas and maintains reciprocal projections with the prelimbic/infralimbic (PL/IL) area of the mPFC. The basal magnocellular nucleus (B nucleus) has more widespread targets in the sensory-motor cortex and does not project to the PL/IL cortex. Optogenetic stimulation was used to establish if BF neurons modulate whisker responses recorded in S1 and PL/IL cortices. We drove the expression of high levels of channelrhodopsin-2, tagged with a fluorescent protein (ChR2-eYFP) by injection of a virus in HDB or B nuclei. Blue-light pulses were delivered to the BF through a thin optic fiber to stimulate these neurons. Blue-light stimulation directed toward the HDB facilitated whisker responses in S1 cortex through activation of muscarinic receptors. The same optogenetic stimulation of HDB induced an inhibition of whisker responses in mPFC by activation of nicotinic receptors. Blue-light stimulation directed toward the B nucleus had lower effects than HDB stimulation. Our findings pointed the presence of specific neuronal networks between the BF and the cortex that may play different roles in the control of cortical activityThis work has been supported by the Spanish Ministerio de Economía y Competitividad Grants (BFU2012-36107 and SAF2016-76462 AEI/FEDER)

    The near-infrared autofluorescence fingerprint of the brain

    Full text link
    This is the peer reviewed version of the following article: Lifante, J, del Rosal, B, Chaves-Coira, I, Fernández, N, Jaque, D, Ximendes, E. The near-infrared autofluorescence fingerprint of the brain. J. Biophotonics. 2020; 13:e202000154, which has been published in final form at https://doi.org/10.1002/jbio.202000154. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived VersionsThe brain is a vital organ involved in mostof the central nervous system disorders.Their diagnosis and treatment require fast,cost-effective, high-resolution and high-sensitivity imaging. The combinationof a new generation of luminescent nanoparticles and imaging systems work-ing in the second biological window (near-infrared II [NIR-II]) is emerging asa reliable alternative. For NIR-II imaging to become a robust technique at thepreclinical level, full knowledge of the NIR-II brain autofluorescence, responsi-ble for the loss of image resolution and contrast, is required. This work demon-strates that the brain shows a peculiar infrared autofluorescence spectrumthat can be correlated with specific molecular components. The existence ofparticular structures within the brain with well-defined NIR autofluorescencefingerprints is also evidenced, opening the door to in vivo anatomical imaging.Finally, we propose a rational selection of NIR luminescent probes suitable forlow-noise brain imaging based on their spectral overlap with brainautofluorescenceComunidad de Madrid, Grant/AwardNumber: B2017/BMD-3867RENIMCM;European Cooperation in Science andTechnology, Grant/Award Number:CA17140; Fundación para la Investigación Biomédica del Hospital Universitario Ramón y Cajal, Grant/Award Number:IMP18_38(2018/0265); Horizon 2020 Framework Programme, Grant/AwardNumber: 801305; Instituto de Salud CarlosIII, Grant/Award Number: PI16/00812;Ministerio de Ciencia, Innovación y Universidades, Grant/Award Number:FJC2018-036734-I; Ministerio deEconomía y Competitividad, Grant/AwardNumbers: MAT2016-75362-C3-1-R,MAT2017-83111R, MAT2017-85617-

    Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated: In vivo optical imaging in the second biological window

    Full text link
    Biomedicine is continuously demanding new luminescent materials to be used as optical probes for the acquisition of high resolution, high contrast and high penetration in vivo images. These materials, in combination with advanced techniques, could constitute the first step towards new diagnosis and therapy tools. In this work, we report on the synthesis of long lifetime rare-earth-doped fluoride nanoparticles by adopting different strategies: core/shell and dopant engineering. The here developed nanoparticles show intense infrared emission in the second biological window with a long luminescence lifetime close to 1 millisecond. These two properties make the here presented nanoparticles excellent candidates for time-gated infrared optical bioimaging. Indeed, their potential application as optical imaging contrast agents for autofluorescence-free in vivo small animal imaging has been demonstrated, allowing high contrast real-time tracking of gastrointestinal absorption of nanoparticles and transcranial imaging of intracerebrally injected nanoparticles in the murine brainThis work was supported in part by the grants from the Fundamental Research Funds for the Central Universities, China (HIT. BRETIV.201503 and AUGA5710052614) and the National Natural Science Foundation of China (51672061). We thank Dr Lina Wu at the Fourth Hospital of Harbin Medical University for her kind help with the MTT assay, and Dr Tymish Y. Ohulchanskyy at Shenzhen University for his kind help with the fluorescence lifetime measurement. The work was also supported by the Ministerio de Economia y Competitividad of Spain (grant MAT2016-75362-C3-1-R). Jie Hu acknowledges the scholarship from the China Scholarship Council (No. 201506650003). Dirk H. Ortgies is grateful to the Spanish Ministry of Economy and Competitiveness for a Juan de la Cierva scholarship (No. FJCI-2014-21101) and the Spanish Institute of Health (ISCIII) for a Sara Borell Fellowship (No. CD17/00210

    Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging

    Get PDF
    12 p.-5 fig.Optical probes operating in the second near-infrared window (NIR-II, 1,000-1,700 nm), where tissues are highly transparent, have expanded the applicability of fluorescence in the biomedical field. NIR-II fluorescence enables deep-tissue imaging with micrometric resolution in animal models, but is limited by the low brightness of NIR-II probes, which prevents imaging at low excitation intensities and fluorophore concentrations. Here, we present a new generation of probes (Ag2S superdots) derived from chemically synthesized Ag2S dots, on which a protective shell is grown by femtosecond laser irradiation. This shell reduces the structural defects, causing an 80-fold enhancement of the quantum yield. PEGylated Ag2S superdots enable deep-tissue in vivo imaging at low excitation intensities (<10 mW cm-2) and doses (<0.5 mg kg-1), emerging as unrivaled contrast agents for NIR-II preclinical bioimaging. These results establish an approach for developing superbright NIR-II contrast agents based on the synergy between chemical synthesis and ultrafast laser processing.Authors thank Dr A. Benayas (CICECO, U. Aveiro, Portugal), Prof G. Lifante and Prof J. García Sole (UAM) for helpful discussions. This work has been founded by Ministerio de Economı́a y Competitividad-MINECO (MAT2017-83111R and MAT2016-75362-C3-1-R) and the Comunidad de Madrid (B2017/BMD-3867 RENIM-CM) co-financed by European Structural and Investment Fund. D.M.-G. thanks UCM-Santander for a predoctoral contract (CT17/17-CT18/17). We thank the staff at the ICTS-National Centre for Electron Microscopy at the UCM for the help in the electron microscopy studies and C.M. at the beamline BL22-CLAESS of the Spanish synchrotron ALBA for his help in the XANES experiments. We also thank J.G.I at the Ultrafast Laser Laboratory at UCM for his help and fruitful discussion. Y.S. acknowledges the support from the China Scholarship Council (CSC File No. 201806870023). Additional funding was provided by the European Commission Horizon 2020 project NanoTBTech, the Fundación para la Investigación Biomédica del Hospital Universitario Ramón y Cajal project IMP18_38 (2018/0265). Ajoy K. Kar and Mark D. Mackenzie acknowledge support from the UK Engineering and Physical Sciences Research Council (Project CHAMP, EP/M015130/1). C. Jacinto thanks the financial support of the Brazilian agencies: CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) through the grants: Projeto Universal Nr. 431736/2018-9 and Scholarship in Research Productivity 1C under the Nr. 304967/20181; FINEP (Financiadora de Estudos e Projetos) through the grants INFRAPESQ-11 and INFRAPESQ-12; FAPEAL (Fundação de Amparo à Pesquisa do Estado de Alagoas) grant Nr. 1209/2016. H. D. A. Santos was supported by a graduate studentship from CNPq and by a sandwich doctoral program (PDSE-CAPES) developed at Universidad Autonoma de Madrid, Spain, Project Nr. 88881/2016-01.Peer reviewe

    Hypothyroidism confers tolerance to cerebral malaria

    Get PDF
    The modulation of the host’s metabolism to protect tissue from damage induces tolerance to infections increasing survival. Here, we examined the role of the thyroid hormones, key metabolic regulators, in the outcome of malaria. Hypothyroidism confers protection to experimental cerebral malaria by a disease tolerance mechanism. Hypothyroid mice display increased survival after infection with Plasmodium berghei ANKA, diminishing intracranial pressure and brain damage, without altering pathogen burden, blood-brain barrier disruption, or immune cell infiltration. This protection is reversed by treatment with a Sirtuin 1 inhibitor, while treatment of euthyroid mice with a Sirtuin 1 activator induces tolerance and reduces intracranial pressure and lethality. This indicates that thyroid hormones and Sirtuin 1 are previously unknown targets for cerebral malaria treatment, a major killer of children in endemic malaria areas.This work was funded by grants SAF2017-83289-R to S.A. and A.A., SAF2017-90604REDT to A.A. supported by the The European Regional Development Fund (FEDER) and BIO2016-77430-R to J.M.B. from the Ministerio de Economía y Competitividad; B2017/BMD-3724 to S.A. and A.A. from the Comunidad de Madrid; and CIBERONC CB/16/00228 to A.A. from the Instituto de Salud Carlos III

    Bilateral Pathways from the Basal Forebrain to Sensory Cortices May Contribute to Synchronous Sensory Processing

    No full text
    Sensory processing in the cortex should integrate inputs arriving from receptive fields located on both sides of the body. This role could be played by the corpus callosum through precise projections between both hemispheres. However, different studies suggest that cholinergic projections from the basal forebrain (BF) could also contribute to the synchronization and integration of cortical activities. Using tracer injections and optogenetic techniques in transgenic mice, we investigated whether the BF cells project bilaterally to sensory cortical areas, and have provided anatomical evidence to support a modulatory role for the cholinergic projections in sensory integration. Application of the retrograde tracer Fluor-Gold or Fast Blue in both hemispheres of the primary somatosensory (S1), auditory or visual cortical areas showed labeled neurons in the ipsi- and contralateral areas of the diagonal band of Broca and substantia innominata. The nucleus basalis magnocellularis only showed ipsilateral projections to the cortex. Optogenetic stimulation of the horizontal limb of the diagonal band of Broca facilitated whisker responses in the S1 cortex of both hemispheres through activation of muscarinic cholinergic receptors and this effect was diminished by atropine injection. In conclusion, our findings have revealed that specific areas of the BF project bilaterally to sensory cortices and may contribute to the coordination of neuronal activity on both hemispheres

    Reduced Insulin-Like Growth Factor-I Effects in the Basal Forebrain of Aging Mouse

    No full text
    It is known that aging is frequently accompanied by a decline in cognition. Furthermore, aging is associated with lower serum IGF-I levels that may contribute to this deterioration. We studied the effect of IGF-I in neurons of the horizontal diagonal band of Broca (HDB) of young (≤6 months old) and old (≥20-month-old) mice to determine if changes in the response of these neurons to IGF-I occur along with aging. Local injection of IGF-I in the HDB nucleus increased their neuronal activity and induced fast oscillatory activity in the electrocorticogram (ECoG). Furthermore, IGF-I facilitated tactile responses in the primary somatosensory cortex elicited by air-puffs delivered in the whiskers. These excitatory effects decreased in old mice. Immunohistochemistry showed that cholinergic HDB neurons express IGF-I receptors and that IGF-I injection increased the expression of c-fos in young, but not in old animals. IGF-I increased the activity of optogenetically-identified cholinergic neurons in young animals, suggesting that most of the IGF-I-induced excitatory effects were mediated by activation of these neurons. Effects of aging were partially ameliorated by chronic IGF-I treatment in old mice. The present findings suggest that reduced IGF-I activity in old animals participates in age-associated changes in cortical activity.This work has been supported by Grants from Ciberned and the Spanish Ministerio de Ciencia e Innovación (SAF2016-76462, AEI/FEDER, and PID2019-107809RB-I00). JZ-V acknowledges the financial support of the National Council of Science, Technology and Technological Innovation (CONCYTEC, Perú) through the National Fund for Scientific and Technological Development (FONDECYT, Perú)
    corecore