2,196 research outputs found

    Transport properties of one-dimensional interacting fermions in aperiodic potentials

    Full text link
    Motivated by the existence of metal-insulator transition in one-dimensional non-interacting fermions in quasiperiodic and pseudorandom potentials, we studied interacting spinless fermion models using exact many-body Lanczos diagonalization techniques. Our main focus was to understand the effect of the fermion-fermion interaction on the transport properties of aperiodic systems. We calculated the ground state energy and the Kohn charge stiffness Dc. Our numerical results indicate that there exists a region in the interaction strength parameter space where the system may behave differently from the metallic and insulating phases. This intermediate phase may be characterized by a power law scaling of the charge stiffness constant in contrast to the localized phase where Dc scales exponentially with the size of the system.Comment: 11 pages LaTex document with 5 eps figures. Uses revtex style file

    An XMM-Newton Observation of the Massive Edge-on Sb Galaxy NGC 2613

    Get PDF
    We present an XMM-Newton observation of the massive edge-on Sb galaxy NGC 2613. We discover that this galaxy contains a deeply embedded active nucleus with a 0.3-10 keV luminosity of 3.3x10^40 erg/s and a line-of-sight absorption column of 1.2x10^23 cm^-2. Within the 25 mag/arcsec^2 optical B-band isophote of the galaxy, we detect an additional 4 sources with an accumulated luminosity of 4.3x10^39 erg/s. The bulk of the unresolved X-ray emission spatially follows the near-infrared (NIR) K-band surface brightness distribution; the luminosity ratio L_X/L_K ~ 8x10^-4 is consistent with that inferred from galactic discrete sources. This X-ray-NIR association and the compatibility of the X-ray spectral fit with the expected spectrum of a population of discrete sources suggest that low-mass X-ray binaries (LMXBs) are the most likely emitters of the unresolved emission in the disk region. The remaining unresolved emission is primarily due to extraplanar hot gas. The luminosity of this gas is at least a factor of 10 less than that predicted by recent simulations of intergalactic gas accretion by such a massive galaxy with a circular rotation speed V_c ~ 304 km/s^2 (Toft et al. 2002). Instead, we find that the extraplanar hot gas most likely represents discrete extensions away from the disk, including two ``bubble-like'' features on either side of the nucleus. These extensions appear to correlate with radio continuum emission and, energetically, can be easily explained by outflows from the galactic disk.Comment: 17 pages, accepted by MNRA

    Dammarane Triterpenoids from Carnauba, Copernicia prunifera (Miller) H. E. Moore (Arecaceae), Wax

    Get PDF
    Phytochemical investigation from carnauba (Copernicia prunifera) wax led to the identification of sixteen dammarane-type triterpenes, including thirteen new characterized as: (24R*)-methyldammara-20,25-dien-3 alpha-ol and a mixture of alkyl (24R*)-methyldammar-25-en- 20-ol-3 beta-carboxylates, together with three previously described triterpenes: carnaubadiol, (24R*)-methyldammara-20,25-dien-3 beta-ol and (24R*)-24-methyldammara-20,25-dien-3-one. Moreover, four fatty alcohols (eicosanol, docosanol, tetracosanol and hexacosanol) as well as four sterols (cholesterol, campesterol, stigmasterol, and sitosterol) were also obtained. These compounds were isolated using classical chromatographic methods and their structures were determined by spectroscopic and chemical methods.Univ Fed Piaui, Dept Quim, BR-64049550 Teresina, PI, BrazilUniv Fed Sao Paulo, Inst Ciencias Ambientais Quim & Farmaceut, BR-09972270 Diadema, SP, BrazilUniv Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210180 Santo Andre, SP, BrazilUniv Fed Sao Paulo, Inst Ciencias Ambientais Quim & Farmaceut, BR-09972270 Diadema, SP, BrazilWeb of Scienc

    Continuum Halos in Nearby Galaxies -- an EVLA Survey (CHANG-ES) -- I: Introduction to the Survey

    Full text link
    We introduce a new survey to map the radio continuum halos of a sample of 35 edge-on spiral galaxies at 1.5 GHz and 6 GHz in all polarization products. The survey is exploiting the new wide bandwidth capabilities of the Karl G. Jansky Very Large Array (i.e. the Expanded Very Large Array, or EVLA) in a variety of array configurations (B, C, and D) in order to compile the most comprehensive data set yet obtained for the study of radio halo properties. This is the first survey of radio halos to include all polarization products. In this first paper, we outline the scientific motivation of the survey, the specific science goals, and the expected improvements in noise levels and spatial coverage from the survey. Our goals include investigating the physical conditions and origin of halos, characterizing cosmic ray transport and wind speed, measuring Faraday rotation and mapping the magnetic field, probing the in-disk and extraplanar far-infrared - radio continuum relation, and reconciling non-thermal radio emission with high-energy gamma-ray models. The sample size allows us to search for correlations between radio halos and other properties, including environment, star formation rate, and the presence of AGNs. In a companion paper (Paper II) we outline the data reduction steps and present the first results of the survey for the galaxy, NGC 4631.Comment: 17 pages, 1 figure, accepted to the Astronomical Journal, Version 2 changes: added acknowledgement to NRA

    First Measurement of the Total Neutron Cross Section on Argon between 100 and 800 MeV

    Get PDF
    We report the first measurement of the neutron cross section on argon in the energy range of 100-800 MeV. The measurement was obtained with a 4.3-h exposure of the Mini-CAPTAIN detector to the WNR/LANSCE beam at LANL. The total cross section is measured from the attenuation coefficient of the neutron flux as it traverses the liquid argon volume. A set of 2631 candidate interactions is divided in bins of the neutron kinetic energy calculated from time-of-flight measurements. These interactions are reconstructed with custom-made algorithms specifically designed for the data in a time projection chamber the size of the Mini-CAPTAIN detector. The energy averaged cross section is 0.91±0.10(stat)±0.09(syst) b. A comparison of the measured cross section is made to the GEANT4 and FLUKA event generator packages, where the energy averaged cross sections in this range are 0.60 and 0.68 b, respectively

    Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3

    Full text link
    Context. Recently, the high-energy (HE, 0.1-100 GeV) γ\gamma-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic γ\gamma-ray binary. Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV) γ\gamma-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Energy spectra are obtained for the orbit-averaged data set, and for the orbital phase bin around the VHE maximum. Results. VHE γ\gamma-ray emission is detected with a statistical significance of 6.4 σ\sigma. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1101-10 TeV energy range is (1.4±0.2)×1035(1.4 \pm 0.2) \times 10^{35} erg/s. A luminosity of (5±1)×1035(5 \pm 1) \times 10^{35} erg/s is reached during 20% of the orbit. HE and VHE γ\gamma-ray emissions are anti-correlated. LMC P3 is the most luminous γ\gamma-ray binary known so far.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&
    corecore