61 research outputs found
Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20âČN and 13°30âČN, Mid Atlantic Ridge)
Microbathymetry data, in situ observations, and sampling along the 138200N and 138200N oceanic
core complexes (OCCs) reveal mechanisms of detachment fault denudation at the seafloor, links between tectonic
extension and mass wasting, and expose the nature of corrugations, ubiquitous at OCCs. In the initial
stages of detachment faulting and high-angle fault, scarps show extensive mass wasting that reduces their
slope. Flexural rotation further lowers scarp slope, hinders mass wasting, resulting in morphologically complex
chaotic terrain between the breakaway and the denuded corrugated surface. Extension and drag along the fault
plane uplifts a wedge of hangingwall material (apron). The detachment surface emerges along a continuous
moat that sheds rocks and covers it with unconsolidated rubble, while local slumping emplaces rubble ridges
overlying corrugations. The detachment fault zone is a set of anostomosed slip planes, elongated in the alongextension
direction. Slip planes bind fault rock bodies defining the corrugations observed in microbathymetry
and sonar. Fault planes with extension-parallel stria are exposed along corrugation flanks, where the rubble cover
is shed. Detachment fault rocks are primarily basalt fault breccia at 138200N OCC, and gabbro and peridotite
at 138300N, demonstrating that brittle strain localization in shallow lithosphere form corrugations, regardless of
lithologies in the detachment zone. Finally, faulting and volcanism dismember the 138300N OCC, with widespread
present and past hydrothermal activity (Semenov fields), while the Irinovskoe hydrothermal field at the
138200N core complex suggests a magmatic source within the footwall. These results confirm the ubiquitous
relationship between hydrothermal activity and oceanic detachment formation and evolution
Expanded oxygen minimum zones during the late Paleocene-early Eocene:Hints from multiproxy comparison and ocean modeling
Anthropogenic warming could well drive depletion of oceanic oxygen in the future. Important insight into the relationship between de-oxygenation and warming can be gleaned from the geological record, but evidence is limited because few ocean oxygenation records are available for past greenhouse climate conditions. We use I/Ca in benthic foraminifera to reconstruct late Paleocene through early Eocene bottom and pore-water redox conditions in the South Atlantic and Southern Indian Oceans, and compare our results with those derived from Mn speciation and the Ce anomaly in fish teeth. We conclude that waters with lower oxygen concentrations were widespread at intermediate depths (1.5-2âkm), whereas bottom waters were more oxygenated at the deepest site, in the Southeast Atlantic Ocean (>3âkm). Epifaunal benthic foraminiferal I/Ca values were higher in the late Paleocene, especially at low oxygen sites, than at well-oxygenated modern sites, indicate higher seawater total iodine concentrations in the late Paleocene than today. The proxy-based bottom water oxygenation pattern agrees with the site-to-site O2 gradient as simulated in a comprehensive climate model (CCSM3), but the simulated absolute dissolved O2 values are low (<~35â”mol/kg), while higher O2 values (~60-100â”mol/kg) were obtained in an Earth system model (cGENIE). Multi-proxy data together with improvements in boundary conditions and model parameterization are necessary if the details of past oceanographic oxygenation are to be resolved
Geochemistry of sediment cores from the Rainbow vent site
A geochemical investigation was carried out on two sediment cores collected at 2 and 5 km from the Rainbow hydrothermal vent site. Bulk sediment compositions indicate that these cores record clear enrichments in Fe, Cu, Mn, V, P and As from hydrothermal plume fallout (Cave et al., 2002, doi:10.1016/S0016-7037(02)00823-2). Sequential dissolution of the bulk sediments has been used to discriminate between a leach (biogenic and oxy-hydroxide) component and a residual phase (detrital and sulphide/sulphate fractions). Major element data (Al, Fe, Ti, Mn, Mg, Ca, Si and index%) reveal that the hydrothermal input, as recorded in the leach phase, is much stronger than apparent from bulk sediment analyses alone. REE patterns for the leach phase record contributions from both biogenic carbonate (mimicking seawater REE patterns) and hydrothermal oxy-hydroxides, with the latter exhibiting positive Eu anomalies (hydrothermal derived) and negative Ce anomalies (seawater derived). Based on major element and REE data, the residue contains contributions from aeolian dust input, local MORB material and a hydrothermal component. Ternary REE mixing calculations indicate that most of the REE within the residual fraction (~80%) is derived from hydrothermal material, while detrital contributions to the REE budget, as deep-sea clay and volcanic debris, are <20%. By combining bulk and REE data for the various end-member components of the residue, we calculate that the chemical composition of the residue hydrothermal end-member is high in Ca (6-15%) and with a Nd/Sr ratio of 0.004. These characteristics indicate the presence of low-solubility hydrothermal sulphate (rather than sulphide) material within the residue component of Rainbow hydrothermal sediments
Spatial Variations in Vent Chemistry at the Lucky Strike Hydrothermal Field, Mid Atlantic Ridge (37°N): Updates for Subseafloor Flow Geometry from the Newly Discovered Capelinhos Vent.
This study aims at characterizing the subseafloor architecture of the Lucky Strike hydrothermal field (LSHF) based on an extensive chemical database of the various vents. Our analysis is motivated by the discovery in 2013 of a new active highâtemperature site, named Capelinhos, approximately 1.5 km east of the LSHF. Capelinhos fluids display particular chemical features with chloride and metals (Fe, Mn) concentrations two times lower and four times higher, respectively, compared to other vent sites. Trace element partitioning over the entire chlorinity range indicates a single deep fluid source feeding all the venting sites. Applying the SiâCl geothermobarometer at Capelinhos, we find phase separation conditions at 435â440°C, and 370â390 bars (2500â2800 m below seafloor (mbsf)) consistent with former estimates for the LSHF, while temperatures of fluidârock last equilibrium are estimated at ~400°C for Capelinhos and 350â375°C for the other sites based on the FeâMn geothermometer. We interpret these discrepancies in thermodynamic conditions beneath the sites in terms of crustal residence time which are likely related to permeability variations across the hydrothermal upflow zone. We propose that conductive cooling of the up flowing fluids from the phase separation zone to the seafloor, beneath the main field vent sites, lowers the T conditions of last fluidârock equilibrium, enabling ~65% of Fe mobilized in the reaction zone to be stored. In comparison, Capelinhos fluids are transported more rapidly from the reaction zone to the seafloor along a highâangle fracture system. The fluids venting at Capelinhos are more representative of the deeper part of the hydrothermal reaction zone
- âŠ