3,983 research outputs found
Experimental Results on mesons from the BABAR experiment
Highlights of a selection of results obtained by the BABAR experiment on the PEP-II collider at SLAC until the spring of 2002 are presented. The phenomenology of CP violation in B decays is briefly reviewed. At that time, CP violation was already significantly established in the decays of neutral B mesons to charmonium and a neutral = 0:75. The analysis method and its implementation are described. The interpretation of the measurements and future prospects are discussed. Preliminary results on charmless and other rare B decays, that could lead to measurements of the CKM angles and are shown
Vitamin D, a modulator of musculoskeletal health in chronic kidney disease
The spectrum of activity of vitamin D goes beyond calcium and bone homeostasis, and growing evidence suggests that vitamin
D contributes to maintain musculoskeletal health in healthy subjects as well as in patients with chronic kidney disease (CKD),
who display the combination of bone metabolism disorder, muscle wasting, and weakness. Here, we review how vitamin D
represents a pathway in which bone and muscle may interact. In vitro studies have confirmed that the vitamin D receptor
is present on muscle, describing the mechanisms whereby vitamin D directly affects skeletal muscle. These include genomic
and non‐genomic (rapid) effects, regulating cellular differentiation and proliferation. Observational studies have shown that
circulating 25‐hydroxyvitamin D levels correlate with the clinical symptoms and muscle morphological changes observed in
CKD patients. Vitamin D deficiency has been linked to low bone formation rate and bone mineral density, with an increased
risk of skeletal fractures. The impact of low vitamin D status on skeletal muscle may also affect muscle metabolic pathways,
including its sensitivity to insulin. Although some interventional studies have shown that vitamin D may improve physical
performance and protect against the development of histological and radiological signs of hyperparathyroidism, evidence is
still insufficient to draw definitive conclusions
Deep levels in a-plane, high Mg-content MgxZn1-xO epitaxial layers grown by molecular beam epitaxy
Deep level defects in n-type unintentionally doped a-plane MgxZn1−xO, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of MgxZn1−xO were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of Ec − 1.4 eV, 2.1 eV, 2.6 V, and Ev + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at Ec − 2.1 eV, Ev + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at Ev + 0.3 eV and Ec − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the Ev + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the Ec − 1.4 eV and Ec − 2.6 eV levels in Mg alloyed samples
Novel Silicon n-on-p Edgeless Planar Pixel Sensors for the ATLAS upgrade
In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans
to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon
technology is a promising candidate for the pixel upgrade thanks to its
radiation hardness and cost effectiveness, that allow for enlarging the area
instrumented with pixel detectors. We report on the development of novel n-in-p
edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of
the "active edge" concept for the reduction of the dead area at the periphery
of the device. After discussing the sensor technology and fabrication process,
we present device simulations (pre- and post-irradiation) performed for
different sensor configurations. First preliminary results obtained with the
test-structures of the production are shown.Comment: 6 pages, 5 figures, to appear in the proceedings of the 9th
International Conference on Radiation Effects on Semiconductor Materials
Detectors and Device
Development of Edgeless n-on-p Planar Pixel Sensors for future ATLAS Upgrades
The development of n-on-p "edgeless" planar pixel sensors being fabricated at
FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the
High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A
characterizing feature of the devices is the reduced dead area at the edge,
achieved by adopting the "active edge" technology, based on a deep etched
trench, suitably doped to make an ohmic contact to the substrate. The project
is presented, along with the active edge process, the sensor design for this
first n-on-p production and a selection of simulation results, including the
expected charge collection efficiency after radiation fluence of comparable to those expected at HL-LHC (about
ten years of running, with an integrated luminosity of 3000 fb) for the
outer pixel layers. We show that, after irradiation and at a bias voltage of
500 V, more than 50% of the signal should be collected in the edge region; this
confirms the validity of the active edge approach.Comment: 20 pages, 9 figures, submitted to Nucl. Instr. and Meth.
Fractal structure in the color distribution of natural images
The colorimetric organization of RGB color images is investigated through the computation of the correlation integral of their three-dimensional histogram. For natural color images, as a common behavior, the correlation integral is found to follow a power law, with a noninteger exponent characteristic of a given image. This behavior identifies a fractal or multiscale self-similar distribution of the colors contained in typical natural images. This finding of a possible fractal structure in the colorimetric organization of natural images complement other fractal properties previously observed in their spatial organization. Such fractal colorimetric properties may be helpful to the characterization and modeling of natural images, and may contribute to progress in vision
A 16-channel Digital TDC Chip with internal buffering and selective readout for the DIRC Cherenkov counter of the BABAR experiment
A 16-channel digital TDC chip has been built for the DIRC Cherenkov counter
of the BaBar experiment at the SLAC B-factory (Stanford, USA). The binning is
0.5 ns, the conversion time 32 ns and the full-scale 32 mus. The data driven
architecture integrates channel buffering and selective readout of data falling
within a programmable time window. The time measuring scale is constantly
locked to the phase of the (external) clock. The linearity is better than 80 ps
rms. The dead time loss is less than 0.1% for incoherent random input at a rate
of 100 khz on each channel. At such a rate the power dissipation is less than
100 mw. The die size is 36 mm2.Comment: Latex, 18 pages, 13 figures (14 .eps files), submitted to NIM
Low temperature reflectivity study of ZnO/(Zn,Mg)O quantum wells grown on M-plane ZnO substrates
We report growth of high quality ZnO/Zn0.8Mg0.2O quantum well on M-plane
oriented ZnO substrates. The optical properties of these quantum wells are
studied by using reflectance spectroscopy. The optical spectra reveal strong
in-plane optical anisotropies, as predicted by group theory, and marked
reflectance structures, as an evidence of good interface morphologies.
Signatures ofc onfined excitons built from the spin-orbit split-off valence
band, the analog of exciton C in bulk ZnO are detected in normal incidence
reflectivity experiments using a photon polarized along the c axis of the
wurtzite lattice. Experiments performed in the context of an orthogonal photon
polarization, at 90^{\circ}; of this axis, reveal confined states analogs of A
and B bulk excitons. Envelope function calculations which include excitonic
interaction nicely account for the experimental report
Single phase a-plane MgZnO epilayers for UV optoelectronics: substitutional behaviour of Mg at large contents
High quality 1 μm thick a-plane MgxZn1−xO layers were produced by molecular beam epitaxy with Mg contents higher than 50%. Resonant Rutherford backscattering spectrometry combined with ion channeling revealed a uniform growth in both composition and atomic order. The lattice-site location of Mg, Zn and O elements was determined independently, proving the substitutional behaviour of Mg in Zn-sites of the wurtzite lattice. X-Ray diffraction pole figure analysis also confirms the absence of phase separation. Optical properties at such high Mg contents were studied in Schottky photodiodes
- …
