11,387 research outputs found
The first accurate parallax distance to a black hole
Using astrometric VLBI observations, we have determined the parallax of the
black hole X-ray binary V404 Cyg to be 0.418 +/- 0.024 milliarcseconds,
corresponding to a distance of 2.39 +/- 0.14 kpc, significantly lower than the
previously accepted value. This model-independent estimate is the most accurate
distance to a Galactic stellar-mass black hole measured to date. With this new
distance, we confirm that the source was not super-Eddington during its 1989
outburst. The fitted distance and proper motion imply that the black hole in
this system likely formed in a supernova, with the peculiar velocity being
consistent with a recoil (Blaauw) kick. The size of the quiescent jets inferred
to exist in this system is less than 1.4 AU at 22 GHz. Astrometric observations
of a larger sample of such systems would provide useful insights into the
formation and properties of accreting stellar-mass black holes.Comment: Accepted for publication in ApJ Letters. 6 pages, 2 figure
A new search strategy for microquasar candidates using NVSS/2MASS and XMM-Newton data
Microquasars are ideal natural laboratories for understanding
accretion/ejection processes, studying the physics of relativistic jets, and
testing gravitational phenomena. Nevertheless, these objects are difficult to
find in our Galaxy. The main goal of this work is to increase the number of
known systems of this kind. We have developed an improved search strategy based
on positional cross-identification with very restrictive selection criteria to
find new MQs, taking advantage of more sensitive modern radio and X-ray data.
We find 86 sources with positional coincidence in the NVSS/XMM catalogs at
|b|<10 deg. Among them, 24 are well-known objects and the remaining 62 sources
are unidentified. For the fully coincident sources, whenever possible, we
analyzed color-color and hardness ratio diagrams and found that at least 3 of
them display high-mass X-ray binary characteristics, making them potential
microquasar candidates.Comment: 9 pages, 3 figures, accepted for publication in A&
No Evidence for Intermediate-Mass Black Holes in Globular Clusters: Strong Constraints from the JVLA
With a goal of searching for accreting intermediate-mass black holes (IMBHs),
we report the results of ultra-deep Jansky VLA radio continuum observations of
the cores of three Galactic globular clusters: M15, M19, and M22. We reach rms
noise levels of 1.5-2.1 uJy/beam at an average frequency of 6 GHz. No sources
are observed at the center of any of the clusters. For a conservative set of
assumptions about the properties of the accretion, we set 3-sigma upper limits
on IMBHs from 360-980 M_sun. These limits are among the most stringent obtained
for any globular cluster. They add to a growing body of work that suggests
either (a) IMBHs ~> 1000 M_sun are rare in globular clusters, or (b) when
present, IMBHs accrete in an extraordinarily inefficient manner.Comment: 6 pages, 2 figures. ApJL in pres
A new perspective on GCRT J1745-3009
Two WSRT observations were performed and five archival VLA data were reduced
in order to redetect the enigmatic radio transient GCRT J1745-3009. The source
was not redetected. We were, however, able to extract important new information
from the discovery dataset. Our reanalysis excludes models that predict
symmetric bursts, but the transient white dwarf pulsar is favoured. Although we
now have more contraints on the properties of this source, we are still unsure
about its basic model.Comment: 11 pages, 5 figure
Interactions Between Moderate- and Long-Period Giant Planets: Scattering Experiments for Systems in Isolation and with Stellar Flybys
The chance that a planetary system will interact with another member of its
host star's nascent cluster would be greatly increased if gas giant planets
form in situ on wide orbits. In this paper, we explore the outcomes of
planet-planet scattering for a distribution of multiplanet systems that all
have one of the planets on an initial orbit of 100 AU. The scattering
experiments are run with and without stellar flybys. We convolve the outcomes
with distributions for protoplanetary disk and stellar cluster sizes to
generalize the results where possible. We find that the frequencies of large
mutual inclinations and high eccentricities are sensitive to the number of
planets in a system, but not strongly to stellar flybys. However, flybys do
play a role in changing the low and moderate portions of the mutual inclination
distributions, and erase dynamically cold initial conditions on average.
Wide-orbit planets can be mixed throughout the planetary system, and in some
cases, can potentially become hot Jupiters, which we demonstrate using
scattering experiments that include a tidal damping model. If planets form on
wide orbits in situ, then there will be discernible differences in the proper
motion distributions of a sample of wide-orbit planets compared with a pure
scattering formation mechanism. Stellar flybys can enhance the frequency of
ejections in planetary systems, but auto-ionization is likely to remain the
dominant source of free-floating planets.Comment: Accepted for publication by Ap
A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-Based Observations of Aerosol Optical Thickness
Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere. Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere, and is a key input to computer models that simulate and predict Earth's changing climate. The global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA Earth Observing System's Terra satellite, provide complementary views of the particles in the atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the multi-angle data makes it possible to separate the surface and atmospheric contributions to the observed top-of-atmosphere radiances, and also to more effectively discriminate particle type. Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the satellite instruments, but only at a few fixed locations. So there are clear reasons to combine these data sets in a way that takes advantage of their respective strengths. This paper represents an effort at combining MISR, MODIS and AERONET AOD products over the continental US, using a common spatial statistical technique called kriging. The technique uses the correlation between the satellite data and the "ground-truth" sun photometer observations to assign uncertainty to the satellite data on a region-by-region basis. The larger fraction of the sun photometer variance that is duplicated by the satellite data, the higher the confidence assigned to the satellite data in that region. In the Western and Central US, MISR AOD correlation with AERONET are significantly higher than those with MODIS, likely due to bright surfaces in these regions, which pose greater challenges for the single-view MODIS retrievals. In the east, MODIS correlations are higher, due to more frequent sampling of the varying AOD. These results demonstrate how the MISR and MODIS aerosol products are complementary. The underlying technique also provides one method for combining these products in such a way that takes advantage of the strengths of each, in the places and times when they are maximal, and in addition, yields an estimate of the associated uncertainties in space and time
Understanding the Dynamical State of Globular Clusters: Core-Collapsed vs Non Core-Collapsed
We study the dynamical evolution of globular clusters using our H\'enon-type
Monte Carlo code for stellar dynamics including all relevant physics such as
two-body relaxation, single and binary stellar evolution, Galactic tidal
stripping, and strong interactions such as physical collisions and binary
mediated scattering. We compute a large database of several hundred models
starting from broad ranges of initial conditions guided by observations of
young and massive star clusters. We show that these initial conditions very
naturally lead to present day clusters with properties including the central
density, core radius, half-light radius, half-mass relaxation time, and cluster
mass, that match well with those of the old Galactic globular clusters. In
particular, we can naturally reproduce the bimodal distribution in observed
core radii separating the "core-collapsed" vs the "non core-collapsed"
clusters. We see that the core-collapsed clusters are those that have reached
or are about to reach the equilibrium "binary burning" phase. The non
core-collapsed clusters are still undergoing gravo-thermal contraction.Comment: 42 pages, 12 figures, 1 table, submitted to MNRA
A Parallel Monte Carlo Code for Simulating Collisional N-body Systems
We present a new parallel code for computing the dynamical evolution of
collisional N-body systems with up to N~10^7 particles. Our code is based on
the the Henon Monte Carlo method for solving the Fokker-Planck equation, and
makes assumptions of spherical symmetry and dynamical equilibrium. The
principal algorithmic developments involve optimizing data structures, and the
introduction of a parallel random number generation scheme, as well as a
parallel sorting algorithm, required to find nearest neighbors for interactions
and to compute the gravitational potential. The new algorithms we introduce
along with our choice of decomposition scheme minimize communication costs and
ensure optimal distribution of data and workload among the processing units.
The implementation uses the Message Passing Interface (MPI) library for
communication, which makes it portable to many different supercomputing
architectures. We validate the code by calculating the evolution of clusters
with initial Plummer distribution functions up to core collapse with the number
of stars, N, spanning three orders of magnitude, from 10^5 to 10^7. We find
that our results are in good agreement with self-similar core-collapse
solutions, and the core collapse times generally agree with expectations from
the literature. Also, we observe good total energy conservation, within less
than 0.04% throughout all simulations. We analyze the performance of the code,
and demonstrate near-linear scaling of the runtime with the number of
processors up to 64 processors for N=10^5, 128 for N=10^6 and 256 for N=10^7.
The runtime reaches a saturation with the addition of more processors beyond
these limits which is a characteristic of the parallel sorting algorithm. The
resulting maximum speedups we achieve are approximately 60x, 100x, and 220x,
respectively.Comment: 53 pages, 13 figures, accepted for publication in ApJ Supplement
Disk-Jet Connection in the Radio Galaxy 3C 120
We present the results of extensive multi-frequency monitoring of the radio
galaxy 3C 120 between 2002 and 2007 at X-ray, optical, and radio wave bands, as
well as imaging with the Very Long Baseline Array (VLBA). Over the 5 yr of
observation, significant dips in the X-ray light curve are followed by
ejections of bright superluminal knots in the VLBA images. Consistent with
this, the X-ray flux and 37 GHz flux are anti-correlated with X-ray leading the
radio variations. This implies that, in this radio galaxy, the radiative state
of accretion disk plus corona system, where the X-rays are produced, has a
direct effect on the events in the jet, where the radio emission originates.
The X-ray power spectral density of 3C 120 shows a break, with steeper slope at
shorter timescale and the break timescale is commensurate with the mass of the
central black hole based on observations of Seyfert galaxies and black hole
X-ray binaries. These findings provide support for the paradigm that black hole
X-ray binaries and active galactic nuclei are fundamentally similar systems,
with characteristic time and size scales linearly proportional to the mass of
the central black hole. The X-ray and optical variations are strongly
correlated in 3C 120, which implies that the optical emission in this object
arises from the same general region as the X-rays, i.e., in the accretion
disk-corona system. We numerically model multi-wavelength light curves of 3C
120 from such a system with the optical-UV emission produced in the disk and
the X-rays generated by scattering of thermal photons by hot electrons in the
corona. From the comparison of the temporal properties of the model light
curves to that of the observed variability, we constrain the physical size of
the corona and the distances of the emitting regions from the central BH.Comment: Accepted for publication in the Astrophysical Journal. 28 pages, 21
figures, 2 table
- …
