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Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some
particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere.
Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere,
and is a key input to computer models that simulate and predict Earth's changing climate. The
global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the
MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA
Earth Observing System's Terra satellite, provide complementary views of the particles in the
atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the
multi-angle data makes it possible to separate the surface and atmospheric contributions to the
observed top-of-atmosphere radiances, and also to more effectively discriminate particle type.
Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the
satellite instruments, but only at a few fixed locations. So there are clear reasons to combine
these data sets in a way that takes advantage of their respective strengths.

This paper represents an effort at combining MISR, MODIS and AERONET AOD products over
the continental US, using a common spatial statistical technique called kriging. The technique
uses the correlation between the satellite data and the "ground-truth" sun photometer
observations to assign uncertainty to the satellite data on a region-by-region basis. The larger
fraction of the sun photometer variance that is duplicated by the satellite data, the higher the
confidence assigned to the satellite data in that region. In the Western and Central US, MISR
AOD correlation with AERONET are significantly higher than those with MODIS, likely due to
bright surfaces in these regions, which pose greater challenges for the single-view MODIS
retrievals. In the east, MODIS correlations are higher, due to more frequent sampling of the
varying AOD. These results demonstrate how the MISR and MODIS aerosol products are
complementary. The underlying technique also provides one method for combining these
products in such a way that takes advantage of the strengths of each, in the places and times
when they are maximal, and in addition, yields an estimate of the associated uncertainties in
space and time.
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10 ABSTRACT

11	 The Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging
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13	 measuring aerosol optical thickness (AOT) since early 2000. These remote-sensing platforms complement

14 the ground-based AErosol RObotic NETwork (AERONET) in better understanding the role of aerosols in

15	 climate and atmospheric chemistry. To date, however, there have been only limited attempts to exploit the

16	 complementary multiangle (MISR) and multispectral (MODIS) capabilities of these sensors along with

17	 the ground-based observations in an integrated analysis. This paper describes a geostatistical data fusion

18	 technique that can take advantage of the spatial autocorrelation of the AOT distribution, while making

19 optimal use of all available datasets. Using Level 2.0 AERONET, MISR and MODIS AOT data for the

20	 contiguous US, we demonstrate that this approach can successfully incorporate information from multiple

21	 sensors, and provide accurate estimates of AOT with rigorous uncertainty bounds. Cross-validation

22	 results show that the resulting AOT product is closer to the ground-based AOT observations than either of

23	 the individual satellite measurements.
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24 1 INTRODUCTION

25	 Atmospheric aerosols play an important and dynamic role in climate and atmospheric chemistry. The

26	 climatic effects of aerosols had already been recognized in the 1970s [Andreae, 1995] but the focus of

27	 scientific attention shifted only during the late 1980s due to the impact of the growing concentrations of

28	 CO2 and other greenhouse gases. Although the radiative forcing of aerosols is still highly uncertain

29	 [IPCC, 2007], it is well understood that aerosols contribute significantly to reflected solar radiation (the

30	 aerosol direct effect) and modify cloud properties (the aerosol indirect effect), producing a net cooling of

31	 the Earth surface, and can also absorb sunlight, thereby warming the ambient atmosphere. Because

32	 aerosols have short atmospheric lifetimes of about a week [Andreae, 1986], they have a heterogeneous

33	 spatial and temporal distribution. Accurately capturing this heterogeneity, and assessing the impact of

34	 tropospheric aerosols on regional and global energy budgets, therefore requires diurnally resolved

35	 observations from some combination of satellite and suborbital measurements.

36	 Two space-based instruments that aim to fulfill this need are the Multi-angle Imaging SpectroRadiometer

37 (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the NASA Earth

38 ObservDWLRQtL 6\V¶TLrP¶V q 7HL, which are used to derive observations of the tropospheric aerosol

39	 optical thickness (AOT), among other parameters [Diner et al., 1998; Kaufman et al., 1997]. Column

40	 AOT is defined as the integral of aerosol extinction from the surface to the top of the atmosphere.

41	 Although these two sensors are on the same platform, discrepancies exist between them in retrieved AOT

42	 over both land and ocean regions [Penner et al., 2002; Myhre et al., 2005; Kinne et al., 2006]. These

43	 discrepancies are due to the differences in assumptions in the retrieval algorithms [Kahn et al., 2007],

44	 observed wavelengths and viewing geometries [IPCC, 2007], and the spatial resolution of observations

45	 [Xiao et al., 2009], among other reasons. Methods for evaluating data from these and other instruments
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46	 are needed, as are approaches for assessing the information content of these data for providing the best

47	 possible representation of the spatial and temporal variability in AOT.

48	 The common way of validating the satellite AOT retrievals has been through the use of the ground-based

49	 Aerosol Robotic Network (AERONET; Holben et al., 1998), which provides sparse but relatively reliable

50 AOT observations. Comparisons between AOT retrieved from space-based instruments and AERONET

51	 data have been used in a variety of contexts to explore the similarities and differences between the MISR

52 and MODIS products. These comparisons have focused on MISR and AERONET [ Liu et al., 2004a;

53 Kahn et al., 2005a, 2005b; Jiang et al., 2007; Chen et al.. 2008], or MODIS and AERONET [ Chu et al.,

54	 2002; Levy et al., 2003, 2005; Remer et al., 2005], and have been specifically targeted at refining the

55	 retrieval algorithms of the individual sensors for different aerosol regimes.

56	 Several studies have also looked at the discrepancies between MISR and MODIS [e.g., Abdou et al.,

57	 2005; Liu et al., 2007; Prasad and Singh, 2007; Yermote et al., 2007; Xiao et al., 2009; Kahn et al.,

58 2009], mostly by comparing them with the AERONET measurements. These studies have concluded that

59	 the major differences can be attributed to location (for example, retrievals near aerosol source regions

60	 and/or presence of clouds, retrievals over land versus water) and the aerosol retrieval algorithms over

61	 those locations. Recently, Kahn et al. [2009] compared MISR and MODIS datasets, and found strong

62	 correlations of 0.9 and 0.7 between MISR and MODIS over ocean and land, respectively. Discrepancies

63	 between the instruments were traced back to sampling differences, known algorithmic issues, or other

64	 mechanisms contributing to aerosol retrieval error. Some of these mechanisms that have been highlighted

65	 previously are aerosol model differences [Abdou et al., 2005; Kahn et al., 2007], presence of clouds

66	 [Martonchik et al., 2004; Kahn et al., 2007; Xiao et al. 2009; Kahn et al., 2009], dust [Kalashnikova and

67	 Kahn, 2006; Martonchik et al., 2004], biomass burning [Kahn et al., 2005a; Chen et al., 2008], and other
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68	 biospheric and anthropogenic factors [Prasad and Singh, 2007; Xiao et al., 2009]. Statistical comparisons

69 have also been carried out between MISR, MODIS and AERONET by Liu and Mishchenko [2008] and

70 Mischenko et al. [2009], although some of the statistical techniques used have subsequently been

71	 questioned [e.g., Kahn et al., 2009]. Overall, the existing literature has resulted in a complex set of

72 conclusions regarding the ways in which MISR, MODIS, and AERONET record AOT [ Xiao et al., 2009].

73	 For example, Liu et al. [2007] conclude that MODIS generally retrieves higher AOT relative to MISR

74 over land, whereas both MODIS and MISR tend to underestimate AERONET AOT measurements for

75	 AOT higher than about 0.5. Similar underestimation is reported by Jiang et al. [2007] and Kahn et al.

76 [2005a], whereas others conclude that MISR overestimates AERONET AOT observations over water

77	 [e.g., Abdou et al., 2005; Kahn et al., 2005b; Liu et al., 2004a].

78	 Given the limitations inherent to each of the available data streams, combining multiple data types may

79	 provide an opportunity to optimally estimate the spatial and temporal distribution of AOT. Some studies

80	 have found the correlation between the AOT data from multiple sensors to be sufficiently strong to justify

81	 the use of ground-based and space-based observations together [Liu et al., 2004a; Prasad and Singh,

82	 2007; Jiang et al., 2007]. However, most of the data fusion attempts have been limited to merging data

83	 from multiple space-based instruments, including Level 1B (i.e. radiance) data [Loeb et al., 2006], Level

84	 2 data of geophysical parameters [ Gupta et al., 2008] and aerosol optical depth [ Nguyen 2009], and

85	 gridded level 3 datasets [Acker et al., 2007]. Recently, Kinne [2009] presented an approach for integrating

86 a weighted composite of remote sensing AOT observations with AERONET AOT through an empirical

87	 averaging procedure.

88 Given the complementary capabilities of the AERONET, MISR and MODIS sensors (see Section 2), it

89	 seems natural to investigate whether it is possible to merge data from these different sensors in a

Page | 5



90	 statistically rigorous framework to obtain an improved AOT product. Such a product could be used to

91	 address scientific issues related to air quality and the radiative effects of aerosols, and in particular, be

92	 used to evaluate model predictions of aerosol distributions.

93	 The objective of this work is to investigate the applicability of Universal Kriging, a simple geostatistical

94	 data fusion approach, for merging multiple AOT datasets. The approach yields a statistical best-estimate

95	 of the AOT spatial distribution, together with a quantification of the associated uncertainty. The estimated

96	 AOT distribution is based only on the available AOT data, and does not incorporate information or

97	 assumptions about atmospheric transport or source regions. Given that the availability of multiple satellite

98	 datasets has already resulted in a research shift from modeling-only to observational-based assessments of

99	 aerosol forcing [ Yu et al., 2006], geostatistical data fusion can potentially provide useful optimal fused

100	 datasets, taking advantage of the strengths, and minimizing the limitations, of each individual sensor in a

101 new way.

102	 The remainder of this paper is organized as follows. Section 2 provides a description of the MISR,

103 MODIS and AERONET data used in the presented analysis. Section 3 gives an overview of the applied

104	 method and examined test cases. Results are presented and discussed in Section 4.

105 2 DATA

106	 The description of the datasets presented here covers only the specific data products used in this study.

107	 The reader is referred to Martonchik et al. [2009] and Remer et al. [2009] for descriptions of the retrieval

108	 algorithms and Yu et al. [2006] for an overview of how tropospheric aerosols are measured. All analyses

109	 are performed using data from 2001.
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110 2.1 AERONET

111	 AERONET is a globally distributed network of over 200 automated ground-based instruments covering

112	 all major tropospheric aerosol regimes [Holben et al., 1998; 2001]. The instruments used are CIMEL

113	 sun/sky radiometers that make direct sun measurements with a 1.28 ˚ full field-of-view every 15 minutes

114	 in eight spectral bands [Holben et al., 1998]. Level 2 (validated) AOT data are used here for 32 sites

115	 within the continental United States. The AERONET data archive (http://aeronet.gsfc.nasa.gov ), includes

AOT at different wavelengths, relative errors of AOT, Angstrom exponents ( α) among different bands, 	 q
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129	 resolution of the dataset is 17.6 km. Theoretical sensitivity studies for MISR [ Kahn et al., 2001] have

130	 estimated the standard deviations of the measurement error associated with the optical depth to be 0.05

(or 0.2τ, whi
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150	 The AOT data from the three sensors cannot be compared directly, in part because they are reported at

151	 different spatial resolutions. Therefore, following the methodology of Liu et al. [2004a], the mean of

152 MISR and MODIS observations within a 0.5 by 0.5 bounding box around each AERONET site is used

153 as a basis for comparison to AERONET data, which are themselves averaged over ±30 min from the

154	 Terra overpass. Correlation coefficients are used to characterize the agreement between daily data-pairs

155 from the 32 AERONET sites and the corresponding MISR or MODIS observations at those sites.

156 3.2 Investigation of the Spatial and Temporal Variability in MISR and MODIS AOT

157	 AOT varies spatially and temporally. This variability can be quantified using variogram analysis, a

158	 geostatistical spatial analysis tool. Although the AERONET network is too sparse to independently

159	 characterize the spatial variability at the continental scale, it can be used for regional analyses in areas

160 when the network is relatively dense. On the other hand, the dense MISR and MODIS data coverage

161	 provides good information about AOT spatial variability as captured by these instruments. Analysis of the

162	 MISR and MODIS AOT spatial variability provides insights into differences in the way that these

163	 instruments capture the AOT distribution. Differences may be due to the differences in the observational

164	 spatial resolution and sampling, instrument signal-to-noise ratios, or retrieval algorithms.

165	 For assessing the AOT temporal variability, the AERONET network is the better candidate, due to its

166 frequent temporal sampling during daylight hours, unlike the snapshots from MISR and MODIS.

167 However, when the spatial and temporal variability is examined simultaneously, the MISR and MODIS

168	 AOT retrievals can also provide useful information about space-time variability. For simplicity, the

169	 spatial and temporal analysis is presented here using the MISR and MODIS data, but the conclusions

170	 about the temporal variability are consistent with those obtained using the AERONET observations

171	 (results not shown). The temporal component of the analysis is useful for identifying the timescales over
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172	 which the AOT data can be integrated into relatively contiguous maps without introducing errors due to

173	 correlations in the temporal variability of the AOT.

174	 The spatiotemporal correlation analysis is performed using variogram analysis (e.g., Chiles and Delf;ner,

175	 1999). For all pairs of AOT data from a given instrument (e.g. MISR), the raw variogram is evaluated as:

1	 2

(2)

176	 where z are the AOT observations at locations x; and xj and times t; and tj, hx is the spatial separation

177	 distance between the two observation locations, and ht is the temporal lag in days between the

178	 observations. hx is calculated as the great circle distance between the locations x; and xj

k (x,, xj ) = r cos 1 sin O, sin 0, + cos O, cos O, cos(6, — 6j )
1

h x x( , ) r cos s
x 	 i 	 j (3)

179	 where ( ;, ;) are the longitude and latitude of location x; and r Vs(thq (EKH q (Dq aWK¶Vuq (In the analysis 	q q

180 presented here, a raw variogram is created for each repeat cycle of MODIS and MISR (i.e. each available

181	 16 day period in 2001).

182	 Once the raw variograms are obtained, the variability can be visualized by binning the variances into

183	 preset ranges of separation distances (hx) and time lags (ht). The binned version of the raw variogram is

184	 referred to as the experimental variogram. If the temporal correlation of the observations across multiple

185	 days is negligible, the experimental variogram can be presented as a function of spatial lag only, and a

186	 theoretical model can be selected to represent the observed spatial-only variability. In the analyses

187	 presented here, an exponential model was found to represent the spatial correlation of the AOT data well:
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0	 0

z 	 z
)(4)

188	 where 6 2 (= 6n + 6b ) represents the variance of observed AOT at large separation distances (i.e., for

189	 uncorrelated observations) and l is the range parameter. The correlation length beyond which correlation

190	 between points becomes negligible is defined as approximately 3 1 [e.g., Chiles and Delfiner, 1999]. 6n is

191	 the nugget, representing both the measurement error and the small-scale variability at distances smaller

192	 than those resolved by available observations, whereas6b represents the variance of the portion of the

193	 AOT variability that is spatially correlated. These parameters are optimized using a least squares fit to the

194	 spatial raw variogram. Conceptually, a higher variance is indicative of greater overall variability, and a

195	 shorter correlation length indicates greater spatial variability at smaller scales.

196 3.3 Geostatistical Data Fusion Approach

197	 Universal kriging (e.g., Chiles and Delfiner, 1999), a geostatistical data fusion approach, makes it

198	 possible to fuse auxiliary variables with full spatial coverage (e.g. MISR and MODIS AOT) to improve

199	 the interpolation of a primary dataset with observations at a finite number of locations (e.g. AERONET

200	 AOT). The auxiliary variables fill a role analogous to regressors in multiple linear regression, but within a

201	 framework that accounts for the spatial correlation of the estimated field, and can reproduce observed

202 AERONET AOT measurements exactly at sampling locations.

203	 The objective is to estimate the AOT distribution ( s) at m locations and times (typically defined on a

204 regular grid), given the AERONET AOT measurements at n locations and times, where s (m 1) is
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modeled as the sum of a deterministic but unknown component Xs
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220	 AOT observations. At the estimation locations, this component represents the predicted residuals between

221 the true AOT and the weighted MISR and MODIS AOT at those locations/times. The covariance of these

222	 residuals is described using a matrix Q, where the covariance function is defined based on the variogram

223	 analysis (Equation 4), such that the covariance between two points xi and xj is defined as:

(7)

In this case, the variogram analysis is carried out on the detrended AERONET AOT data ( z f Xs
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235	 where Q.. is the n n spatial covariance matrix defined between AERONET observation locations

236 based on Equation 7, Xz (n p) is the trend term defined at the measurement locations based on Equation

237	 6, Q., (n m) represents the covariance evaluated between the measurement and the estimation locations

238	 again based on Equation 7, and X. ( m p) is the model of the trend defined at the estimation locations

239	 again based on Equation 6.When multiple time periods are used in the analysis, as is true for the test cases

240	 described in Section 3.4, the correlation between time periods is assumed to be zero. The system of

241 	 equations is solved for M, a p m matrix of Lagrange multipliers, and the m n matrix of weights to
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248	 where the diagonal elements of o represent the uncertainty of the individual drift parameters, and the

249	 off-diagonal terms represent the estimated covariance of the errors associated with these estimates. Recall

250 that the drift coefficients are the weights assigned to the MISR and MODIS AOT datasets. These weights

251	 remain constant over the domain of analysis. As a consequence, the relationship between the true (as

252 represented by AERONET) AOT, and MISR and MODIS AOT, is implicitly assumed to remain constant

253	 within an examined region. This is one of the reasons for which the test cases examined in Section 3.4 are

254 conducted regionally, because the relationship between MISR, MODIS, and AERONET cannot

255	 necessarily be assumed to remain constant throughout the continental United States.

256	 Ordinary Kriging, a simple geostatistical interpolation technique, is used for comparison to the

257	 Universal Kriging estimates in the presented analyses. Ordinary kriging is one of the most commonly

258	 used techniques in geostatistical gap filling, but it lacks the advantage of using information from multiple

259	 sensors. In the ordinary kriging approach, Xs = [1 ... 1] T, and the covariance is derived using a variogram of

260 the AERONET observations without detrending. The other equations remain unchanged. Past

261	 applications of ordinary kriging in aerosol science have been limited to estimation of aerosol species over

262	 different regions [Zapletal, 2001; Delalieux et al., 2006], and have not been aimed at comparison with

263	 other estimation techniques. In this work, because the true AOT distribution is unknown, the ordinary

264	 kriging estimates are used as a baseline for evaluating the estimates from universal kriging. By comparing

265	 the two kriging estimates, we identify the effect of using additional satellite observations on both the

266	 AOT estimates and the uncertainty associated with those estimates.

267 3.4 Test Cases

268	 The correlation analysis (Section 3.1) is carried out for three regions over the contiguous United States for

269	 selected periods in 2001. Recognizing that aerosol distributions can be both site and season specific, the
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270	 United States are divided into three regions (Western, Central, and Eastern), as illustrated in Figure 1. In

271	 the Western region, we expect dust to be dominant, along with biomass burning during the summer and

272	 autumn months. Biogenic aerosols often dominate the southeast, especially in summer, where biomass

273	 burning may also be important in some seasons. Four seasons are considered: Winter (DJF), Spring

274	 (MAM), Summer (JJA) and Fall (SON). Following previous studies ( Kahn et al. [2005a]; Liu et al.

275	 [2004a]; Abdou et al. [2005]), the correlation analysis was carried out at a daily scale.

276	 The spatio-temporal analysis is carried out using the MISR and MODIS datasets. The analysis is

277	 performed at the native resolution of MISR (i.e., 17.6 km) and MODIS (i.e., 10 km) AOT for each 16-day

278	 repeat cycle of the Terra satellite in 2001. By doing this analysis for each 16-day repeat cycle, the

279	 seasonal changes in spatio-temporal variability of AOT can be assessed, as well as how these changes

280	 relates to the periodic changes in the underlying AOT processes over the continental US.

281	 Finally, the geostatistical data fusion analysis is presented using two test cases, the first being over the

282 Eastern US during autumn, and the second over the Western US during summer (Figure 2). Table 1

283	 outlines the details of these two test cases. For these test cases, the study region is broken up into 0.2 x

284 0.2 grid cells at which the AOT estimates are obtained. The MISR and MODIS observations used for

285	 this analysis are averages of all the MISR and MODIS AOT observations falling within a given 0.2 x

286	 0.2 grid cell. This particular estimation resolution is chosen to show the flexibility of the universal

287	 kriging approach in estimating AOT at very fine resolutions, but in general could be performed at coarser

288	 estimation scales as well.

289	 As will be shown in Section 4.2, there is little significant temporal correlation in the day-to-day variability

290	 in the MISR and MODIS AOT within a 7-day period. As a result, the geostatistical data fusion is

291 performed in one-week increments, using weekly-averaged AOT data from AERONET, MISR and
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292 MODIS. These averaged AOT data are used to obtain estimates of the average spatial distribution of AOT

293	 over those 7-day periods. For each 7-day period, AERONET sites that have AOT data for at least three of

294 the seven days, and which have overlapping MISR and MODIS data, are used in the analysis. As a result,

295	 for the Eastern Test Case during autumn, two to ten sites are used during the various weeks, whereas for

296 the Western Test Case during summer, two to eight sites are used in each week. Figure 2 shows the

297	 locations of all the sites used in the test cases. It should be noted here that there may be cases in which

298	 significant temporal correlation may exist (e.g. near sources), such as where shorter time-scale variations

299	 are predominant, or where strong gradients occur in transported aerosol from far sources. In such cases

300	 the data fusion approach should be applied with caution.

301	 The AOT estimates obtained from universal kriging (henceforth denoted as AOT UK) are compared with

302	 AOT estimates obtained from ordinary kriging (henceforth denoted as AOT OK). Cross-validation is used

303	 to compare the two estimates. In this approach, individual AERONET 7-day observations at a given site

304	 are sequentially eliminated from the analysis, and estimates at these locations and times are obtained

305 using the remaining AERONET observations, and, for AOTUK, using available MISR and MODIS data as

306	 well. Because AERONET measurements have traditionally been used for validating satellite observations

307 of MISR and MODIS [Kahn et al., 2005a; Remer et al., 2005; Yu et al., 2006], the withheld AERONET

308	 observations are used to evaluate the relative precision and accuracy of the AOT OK and AOTUK estimates.

309	 The evaluation of AOTOK and AOTUK estimates is carried out using three metrics. First, the root mean

310 square error (RMSE) is calculated between the estimated AOT and the AERONET observations. Second,

311	 the magnitude of the predicted kriging uncertainties is evaluated by calculating the root mean square

312	 prediction error (RMSPE) of the kriging uncertainties (Equation 10). Third, the accuracy of these

313	 predicted uncertainties is evaluated by verifying the percent of true AERONET AOT observations that

Page | 17



314	 fall within two standard deviations of the estimated AOT, where the standard deviations are those

315	 predicted by the kriging analyses (Equation 10). This third metric is less sensitive to extreme outliers,

316	 and, in an ideal scenario, 95% of the true AOT should fall within this interval. Values significantly below

317	 95% would indicate an underestimation of the true uncertainties, while values substantially above 95%

318	 indicate overly conservative estimates. All three metrics are calculated across the entire season for both

319	 test cases.

320	 Overall, the two examined test cases are designed to (i) demonstrate the versatility of the universal

321	 kriging technique in estimating AOT over different regions and across seasons, (ii) evaluate the

322	 improvement of universal kriging estimates over ordinary kriging estimates (or simply the AOT fields

323	 observed by MISR or MODIS individually) as a function of the strength of the relationship between

324 MISR, MODIS, and AERONET AOT.

325 4 RESULTS AND DISCUSSION

326 4.1 Comparison of MISR, MODIS and AERONET datasets

327	 The results of the correlation analysis are presented in Table 2, and reveal that MISR data have a stronger

328	 correlation to AERONET data (=0.47 to 0.92) than do MODIS data (=0.09 to 0.61) across seasons in

329	 the Western and Central regions. Given that the correlation coefficient is an indication of the degree of

330	 linear covariability between the datasets, this implies that MISR is better able to explain the variability in

331 the AERONET AOT than MODIS over these regions. Note that for MODIS, the "standard" product was

332	 used in this paper, and it is plausible that using the more recent "Deep Blue" product, which was not

333 available at the time of analysis, would have shown better agreement with the AERONET AOT, at least

334	 over bright surfaces. On the other hand, the particle properties used in the MODIS standard AOT retrieval
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335	 over land are assumed based on AERONET values [Levy et al., 2007], whereas for MISR, particle

336	 properties are retrieved along with AOT as part of a self-consistent process [Martonchik et al., 2009].

337	 The weak correlation in the Western region for both instruments is primarily due to low AOT values in

338	 this region, which are near the lower limit of retrieval sensitivity for MISR and MODIS. Liu et al. [2004a;

339	 2004b] points out that low values of AOT, as well as coarse-particle dominated scenarios, may produce

340 poor correlations with AERONET AOT. This does not necessarily indicate poor MISR or MODIS

341	 performance; rather, at very low AOT values, the correlation coefficients are not informative because the

342	 uncertainty associated with the satellite retrievals is large compared to the magnitude of the AOT itself.

343	 The high surface albedo in the Western sector and the frequent atmospheric loading with non-spherical

344	 mineral dust are additional obstacles to obtaining good satellite retrievals of AOT over this region.

345	 In the Eastern region, the MISR (=0.52 to 0.86) and MODIS (=0.70 to 0.87) data show comparable

346 correlations to AERONET across seasons, and are able to capture the AERONET AOT variability better

347	 than across the other two examined regions. The year-round correlation coefficients ( = 0.78 for MISR

348	 and =0.84 for MODIS) are similar to values that have been reported previously for continental sites in

349	 this region [ Chu et al., 2002; Liu et al., 2004a; Kahn et al., 2005a].

350	 Overall, results from this analysis are consistent with previous findings that indicate that differences

351 between MISR and MODIS AOT relative to AERONET AOT are caused by site-specific effects and

352	 aerosol-size-distribution effects.

353	 This initial analysis indicates that the information provided by MISR and MODIS with regard to the AOT

354 distribution as measured by the AERONET network varies regionally and seasonally throughout the

355	 continental United States. Based on these results, it is expected that universal kriging analysis should
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356 outperform ordinary kriging in the Eastern region, where the correlations between the AERONET data

357	 and the MISR and MODIS data are strong. In other regions, the additional information provided by

358	 MODIS and MISR is less significant, and the universal kriging and ordinary kriging analyses are

359	 expected to be more similarly to one another.

360 4.2 Spatio-Temporal Variability Analysis

361	 The spatio-temporal variability analysis is performed for MISR and MODIS AOT for each 16-day repeat

362	 cycle in 2001 for the Terra satellite. For each repeat cycle, a spatio-temporal experimental variogram is

363	 obtained. Example variograms are presented for MISR and MODIS in Figures 3a and 3b, for April 11 to

364 26, 2001. These variograms represent the expected variance of pairs of MISR (Figure 3a) or MODIS

365	 (Figure 3b) observations, separated by a given distance in space and time lag.

366	 Figures 3a and 3b do not exhibit any noticeable temporal correlation in the day-to-day variability of the

367	 AOT distribution for time lags up to 7 days. The temporal lag (shown on the vertical axis) in Figures 3a

368 and 3b represents the number of days between the times when two observations are recorded. A temporal

369	 lag of one day could therefore represent, for example, the expected variance between observations taken

370	 on days 14 and 15, or on days 1 and 2 or the repeat cycle. The lack of temporal correlation indicates that

371	 the coherent temporal variability in the AOT takes place either at sub-diurnal scales that cannot be

372	 captured by the examined remote sensing data products, and/or at longer time scales, potentially

373	 representative of seasonal variability.

374	 Hence, the results of this analysis indicate that temporal correlation is not significant at for time lags up

375 to 7 days, and therefore that MISR and MODIS data taken over a week can be integrated into a single

376	 map. In other words, multiple days of data can be used concurrently to inform the data fusion analysis.
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377	 Note that the lack of temporal correlation does not necessarily imply a lack of temporal variability, but

378	 simply that the observed AOT is not correlated from day to day.

379 On the other hand, Figures 3a and 3b reveal that the MISR and MODIS AOT data do exhibit strong

380	 spatial correlation, as evidenced by the fact that the variance increases as the spatial separation distance

381	 increases. This is more clearly visible in Figures 3c and d, where all data from the April 11 to 26 repeat

382	 cycle are examined in a single spatial variogram. These figures display both the experimental and the

383	 fitted theoretical spatial variograms for MISR and MODIS. These two figures indicate that the correlation

384	 length of AOT data (i.e., the lag distance at which the semivariance reaches an asymptote) appears to be

385	 approximately 900km for both instruments for the examined time period, indicating that observations

386	 separated by longer distances are essentially independent.

387	 Figures 3e and 3f present the parameters of the fitted theoretical spatial variograms for each of the 25

388	 Terra repeat cycles in 2001. This analysis shows that the spatial correlation of the MISR and MODIS

389	 AOT data are quite consistent with one another (blue lines in Figures 3e and f). The correlation lengths

390 vary significantly throughout the year, ranging from 500km to 1500km, with higher values prevalent

391	 during the summer months. On the other hand, the total amount of variability (i.e. variance) of the

392 MODIS AOT is always significantly higher than that of MISR. During the winter months, both MISR and

393	 MODIS show shorter correlation lengths and increased variance, representative of a more heterogeneous

394	 distribution of aerosols. In general, the long-range transport of dust in late spring and summer, and smoke

395	 from summer through early autumn, are likely to contribute to the longer correlation lengths during the

396	 summer months, whereas local aerosol sources explain the smaller-scale variability observed during other

397	 seasons.
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398	 Seasonal changes in the spatial variability of AOT will impact the uncertainty estimates obtained from

399	 universal kriging. During the summer months, due to the longer correlation lengths and smaller variance,

400	 the AOT estimates will have lower uncertainty, while, conversely, during the winter months, we can

401	 expect higher estimation uncertainties.

402 One interesting conclusion from Figure 3 is that the MODIS AOT variance is higher than that for MISR,

403	 across all seasons. This is due in part to the fact that the more frequent and finer scale MODIS sampling

404	 captures more small-scale AOT variability than MISR. The second reason for this higher variance is that,

405	 due to its exclusively near-nadir viewing geometry, MODIS has a greater sensitivity to variability in

406	 surface brightness on small spatial scales, which in turn introduces some additional variability into the

407	 MODIS AOT retrievals. Neither of these features hinders the application of the universal kriging

408	 approach presented in this work. However, it has implications for researchers pursuing assimilation of

409	 MISR and MODIS radiance data, or looking to improve the retrieval algorithms of these two sensors.

410 4.3 Data Fusion Results

411	 Figures 4 and 5 show the estimated AOT field for one week of each of the case studies described in Table

412	 1. The Eastern test case demonstrates that the universal kriging AOT estimates are better than the

413 ordinary kriging estimates when MISR and MODIS are significantly correlated with the AERONET AOT

414	 observations. The associated uncertainties for the AOTUK estimates are significantly lower. Cross-

415	 validation at the AERONET locations confirms that the AOT UK estimates are more realistic than the

416	 AOTOK estimates, as shown for one of the 7-day periods in Figure 6 (see Figures S 1 and S2 in the

417	 Supplementary material for the entire season). Overall, for this test case, the RMSE for AOT UK is 0.053,

418	 which is lower than that of AOT OK (0.067) and each of the individual satellite datasets (0.054 for MISR

419	 and 0.056 for MODIS). The true AOT falls within the 2 standard deviations of both the kriging estimates
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420 for 93% of AERONET observations, but the RMSPE of AOTUK (RMSPE = 0.035) is significantly lower

421	 than that of AOTOK (RMSPE = 0.069). These results confirm that, when strong correlation exists between

422	 multiple datasets, the universal kriging approach can be used to obtain better predictions with smaller

423	 uncertainties relative to estimates based on measurements from a single sensor. This is evident not only

424 from the reduction in uncertainty, but also from the lower RMSE and RMSPE values of AOTUK relative

425 to AOTOK.

426	 The Western test case demonstrates that the universal kriging estimates are comparable to the ordinary

427 kriging estimates in regions where the correlation with MISR and MODIS is low. The predicted

428	 uncertainty (Figure 5b and d) is similar for the two methods. This is consistent with our findings from the

429 correlation analysis,, because MISR and MODIS are not strongly correlated with the AERONET AOT in

430 this region (Table 2), and are therefore unable to capture the AERONET AOT variability. Cross-

431	 validation results shown in Figure 7 confirm that the two approaches provide similar estimates with high

432 uncertainty (see Figure S3 and S4 in the Supplementary material for the entire season). The AERONET,

433 MISR and MODIS AOT values are also plotted in Figure 7, and demonstrate that, for the examined case,

434 both ordinary and universal kriging seem to do better than just using individual MISR and MODIS

435	 datasets. This is further validated by the metrics calculated for the entire season. The RMSE for both

436 AOTUK and AOTOK is 0.047 and 0.048, respectively, which is lower than the RMSE of 0.082 for MISR

437 and 0.26 for MODIS. The true AERONET AOT fall within 2 standard deviations of AOT UK and AOTOK

438	 estimates for 98% of available observations. Finally, the RMSPEs are similar for the ordinary (RMSPE =

439	 0.066) and universal (RMSPE = 0.061) kriging approaches, reaffirming their similarity to one another for

440	 this test case.

Page | 23



441	 In addition to predicting AOT, the universal kriging approach can be used to quantify which of the

442	 satellite observations has more influence on the estimation procedure, by looking at the drift coefficient

443	 ( 6) values and their uncertainties ( 60), as shown in Table 3. A coefficient of variation (6 0/ 6) below

444	 0.5 implies a statistically significant contribution to the trend at the 2 6 0 level. For the Eastern Test Case,

445 the MODIS AOT observations have a more significant drift coefficient ( 6o/ ()= 0.18) than the MISR

446	 data, and these latter data are therefore used primarily to adjust the spatial pattern in MODIS AOT to

447 more closely resemble the AERONET AOT observations. Conversely, for the Western Test Case, the

448 MISR AOT observations seem to be a significant predictor of AERONET AOT measurements (60/ O =

449	 0.43). In addition, the drift coefficient values for the constant term ( ^ ) are not significantly different

450	 from zero for either examined case, indicating an absence of any systematic offset between the AOT

451 predicted by the weighted combination of MISR and MODIS, and the AOT observed by AERONET.

452	 Finally, although this analysis used both MISR and MODIS in the data fusion process, one could easily

453 use either MISR or MODIS individually, or some other combined AOT product(s). The approach

454	 presented combines the best available information from all available sensors to identify the optimal

455	 weighted combination to represent the AOT distribution.

456 5 CONCLUSIONS

457	 A geostatistical data fusion technique is implemented for combining remote-sensing and ground-based

458	 observations of AOT. Results show that adopting the universal kriging approach based on the

459 combination of MISR, MODIS and AERONET enables better estimation of AOT with reduced

460	 uncertainties, relative to estimates based on observations from a single instrument.
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461	 All three examined datasets were found to display strong spatial correlation in their measured AOT

462	 distributions. Although the total degree of AOT variability differed between MISR and MODIS, the

463	 spatial scales of this variability were similar for these instruments. The day-to-day temporal correlation in

464 MISR or MODIS AOT observations was found to be minimal, due at least in part to limited temporal

465	 sampling, making it possible to integrate such observations over multiple days to better infer the spatial

466	 distribution of AOT.

467	 As an increasing number of remote sensing observations become available, data fusion approaches such

468	 as the one presented here may hold the key to furthering our understanding of atmospheric aerosols.

469	 Although differences between instruments are always present, the approach implemented here takes

470	 advantage of their complementary features by combining the datasets in a manner that is statistically

471	 robust. The approach relies on the availability of auxiliary variables (MISR and MODIS AOT, in the

472	 presented analysis) at all locations where the AOT is to be estimated, and assumed that the relationship

473 between these auxiliary variables and the primary observations (AERONET AOT, in the presented

474	 analysis) remains constant throughout the examined region.

475	 Finally, this study reinforces the complementary value of remote-sensing and ground-based observations

476	 of AOT. Long-term monitoring of aerosol distributions is possible via remote sensing measurements, and

477	 these can be used to capture the spatio-temporal distribution of aerosols. Expected refinements in retrieval

478	 algorithms and sensor capabilities will improve the accuracy of the retrieved AOT further. By fusing

479	 these measurements with ground-based observations using techniques such as the one presented here, it

480	 will be possible to obtain reliable long-term estimates of AOT at national and even global scales.
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638 TABLES
639
640	 Table 1- Test case specifications

Test Time Spatial Estimation Resolution Number of
Case Period Extent AERONET

locationsSpatial Temporal

Eastern Fall 70°-85°W 0.2º x 0.2º Average 10
25°-50°N over a 7 day

period

Western Summer 105°-120° W 0.2º x 0.2º Average 8
25°-50° N over a 7 day

period

641
642 Table 2 f Correlation coefficients between AERONET measurements and MISR and MODIS
643	 observations classified by region (Figure 1), and season for the year 2001. Low correlation coefficient (0-
644	 0.5) cases are shaded in dark gray, medium correlation coefficient (0.5-0.75) cases are shaded in light
645	 gray, and high correlation coefficient cases (0.75-1.00) are in bold. The lowest correlations occur in the
646	 west, where bright surfaces and mixtures of spherical particles and non-spherical dust dominate, and in
647	 the winter months, when total-column AOT tends to be low, and AOT is near the sensitivity limit of the
648	 satellite instruments.

Winter (DJF) Spring (MAM) Summer (JJA) Fall (SON) All Months

MISR MODIS MISR MODIS MISR MODIS MISR MODIS MISR MODIS

Western 0.49 0.09 0.67 0.29 0.47 0.32 0.59 0.09 0.63 0.30

Central 0.92 0.51 0.68 0.61 0.73 0.58 0.67 0.43 0.80 0.59

Eastern 0.79 0.70 0.52 0.77 0.86 0.87 0.82 0.80 0.78 0.84

649
650	 Table 3 - Drift coefficient values, their associated uncertainties and the coefficient of variation for the two
651	 test cases from the universal kriging model.

Test Constant MISR MODIS
Case / 0 0 6q / 0 6q / 06c 6

Eastern 0.010 0.014 1.4 0.017 0.16 9.42 0.68 0.12 0.18

Western 0.027 0.024 0.88 0.37 0.16 0.43 0.040 0.070 1.75

652
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653 FIGURES
654
655 Figure Captions
656
657 Figure 1 - Location of AERONET sites used in the correlation analysis. The examined regions are
658	 outlined in blue. Closed circles represent observation locations also used in the universal kriging test
659	 cases.
660
661 Figure 2 f AERONET sites used for Western and Eastern test case. The AERONET sites in the Western
662 Region are Missoula (MIS), Rimrock (RIM), BSRN-BAO-Boulder (BSR), Railroad Valley (RAI), Rogers
663 Dry Lake (ROG), La Jolla (LAJ), Maricopa (MAR) and Sevilleta (SEV); the AERONET sites in the
664 Eastern Region are Rochester (ROC), Cartel (CAR), Harvard Forest (HVF), GISS (GIS), Philadelphia
665 (PHI), MD Science Centre (MDS), GSFC (GSF), Big Meadows (BIG), Wallops (WAP) and Cove (COV).
666
667 Figure 3 - Variograms of the spatial and temporal variability of AOT from MISR and MODIS. Panels (a)
668	 and (b) represent the spatial and temporal variograms of AOT over a 16 day period from April 11 to April
669	 26, 2001 for MISR and MODIS respectively. The color bar indicates the semi-variance. Panels (c) and (d)
670 represent the spatial variogram over the same period from MISR and MODIS, respectively, using all data
671	 over the 16-day period. Panels (e) and (f) show the correlation length (3l) and variance of AOT for all 16-
672 day periods in 2001 for MISR and MODIS, respectively. Note that MODIS had no data for one repeat
673	 cycle in June.
674
675 Figure 4 - Comparison of AOTOK with AOTUK for Eastern Test Case for one period from October 29 to
676 November 4. The black asterisks indicate the locations of the AERONET sites. The white gaps indicate
677	 the 7-day satellite coverage mask that is imposed on both universal and ordinary kriging for ease of
678	 comparison. (a) Best estimates obtained from ordinary kriging. (b) Uncertainty associated with the
679	 ordinary kriging estimates. (c) Best estimates obtained from universal kriging. (d) Uncertainty associated
680	 with the universal kriging estimates.
681
682 Figure S - Comparison of AOTOK with AOTUK for Western Test Case for a 7-day period from July 21 to
683	 July 27. The black asterisks indicate the locations of the AERONET sites. The white gaps indicate the 7-
684	 day satellite coverage mask that is imposed on both universal and ordinary kriging for ease of
685	 comparison. (a) Best estimates obtained from ordinary kriging. (b) Uncertainty associated with the
686	 ordinary kriging estimates. (c) Best estimates obtained from universal kriging. (d) Uncertainty associated
687	 with the universal kriging estimates.
688
689 Figure 6 f Cross validation results for October 29 f November 4 for Eastern test case. Error bars
690 UHSUnV σQWdq2σŝ uncertainty bounds.
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694 SUPPLEMENTARY MATERIAL
695
696 Figure Captions
697
698	 Figure S1 f Cross-validation results for September 3 to October 14, 2001 for Eastern test case. Error bars
699 UHSUnV σQWdq2σŝ uncertainty bounds.
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