38 research outputs found

    Bis(1,10-phenanthroline-5,6-dione-κ2 N,N′)silver(I) tetra­fluoridoborate

    Get PDF
    In the structure of the title compound, [Ag(C12H6N2O2)2]BF4 or [AgL 2]BF4 (L = phendione), the Ag and B atoms are located on twofold rotation axes. The dihedral angle between the two phendione ligands is 36.7 (2)°. The coordination about the AgI center is distorted tetra­hedral (τ4 = 0.546). The crystal structure is consolidated by weak C—H⋯O(phendione) and C—H⋯F(BF4 −) inter­actions. The BF4 − counter-anion is strongly disordered and was modelled with two sets of idealized F atoms

    Picoradian deflection measurement with an interferometric quasi-autocollimator using weak value amplification

    Full text link
    We present an "interferometric quasi-autocollimator" that employs weak value amplification to measure angular deflections of a target mirror. The device has been designed to be insensitive to all translations of the target. We present a conceptual explanation of the amplification effect used by the device. An implementation of the device demonstrates sensitivities better than 10 picoradians per root hertz between 10 and 200 hertz.Comment: To be published in Optics Letter

    2,3-Dichloro-5,8-dimethoxy-1,4-naphthoquinone

    Get PDF

    5,6-Di­oxo-1,10-phenanthrolin-1-ium trifluoro­methane­sulfonate

    Get PDF
    In the structure of the title salt, C12H7N2O2 +·CF3SO3 −, the cation participates in hydrogen bonding with the dione group of an adjacent cation as well as with the trifluoro­methane­sulfonate anion. In addition, there is an extensive network of C—H⋯O inter­actions between the cations and anions. There are two formula units per asymmetric unit. The crystal studied exhibits inversion twinning

    Acetato(1,10-phenanthroline-5,6-dione)silver(I) trihydrate

    Get PDF
    In the structure of the title compound, [Ag(C2H3O2)(C12H6N2O2)]·3H2O, the AgI atom is coordinated by both 1,10-phenanthroline-5,6-dione N atoms and one O atom from the acetate anion. The three water mol­ecules are involved in extensive hydrogen bonding to each other and to the acetate O and 1,10-phenanthroline-5,6-dione O atoms. In addition, there are weak C—H⋯O inter­actions

    Epigenetic and integrative cross-omics analyses of cerebral white matter hyperintensities on MRI

    Get PDF
    Cerebral white matter hyperintensities on MRI are markers of cerebral small vessel disease, a major risk factor for dementia and stroke. Despite the successful identification of multiple genetic variants associated with this highly heritable condition, its genetic architecture remains incompletely understood. More specifically, the role of DNA methylation has received little attention. We investigated the association between white matter hyperintensity burden and DNA methylation in blood at approximately 450,000 CpG sites in 9,732 middle-aged to older adults from 14 community-based studies. Single-CpG and region-based association analyses were carried out. Functional annotation and integrative cross-omics analyses were performed to identify novel genes underlying the relationship between DNA methylation and white matter hyperintensities. We identified 12 single-CpG and 46 region-based DNA methylation associations with white matter hyperintensity burden. Our top discovery single CpG, cg24202936 (P = 7.6 × 10-8), was associated with F2 expression in blood (P = 6.4 × 10-5), and colocalized with FOLH1 expression in brain (posterior probability =0.75). Our top differentially methylated regions were in PRMT1 and in CCDC144NL-AS1, which were also represented in single-CpG associations (cg17417856 and cg06809326, respectively). Through Mendelian randomization analyses cg06809326 was putatively associated with white matter hyperintensity burden (P = 0.03) and expression of CCDC144NL-AS1 possibly mediated this association. Differentially methylated region analysis, joint epigenetic association analysis, and multi-omics colocalization analysis consistently identified a role of DNA methylation near SH3PXD2A, a locus previously identified in genome-wide association studies of white matter hyperintensities. Gene set enrichment analyses revealed functions of the identified DNA methylation loci in the blood-brain barrier and in the immune response. Integrative cross-omics analysis identified 19 key regulatory genes in two networks related to extracellular matrix organization, and lipid and lipoprotein metabolism. A drug repositioning analysis indicated antihyperlipidemic agents, more specifically peroxisome proliferator-activated receptor alpha, as possible target drugs for white matter hyperintensities. Our epigenome-wide association study and integrative cross-omics analyses implicate novel genes influencing white matter hyperintensity burden, which converged on pathways related to the immune response and to a compromised blood brain barrier possibly due to disrupted cell-cell and cell-extracellular matrix interactions. The results also suggest that antihyperlipidemic therapy may contribute to lowering risk for white matter hyperintensities possibly through protection against blood brain barrier disruption

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth
    corecore