14 research outputs found

    Molecular Epidemiology of Infant Botulism in California and Elsewhere, 1976–2010

    Get PDF
    Background. Infant botulism (IB), first identified in California in 1976, results from Clostridium botulinum spores that germinate, multiply, and produce botulinum neurotoxin (BoNT) in the immature intestine. From 1976 to 2010 we created an archive of 1090 BoNT-producing isolates consisting of 1012 IB patient (10 outpatient, 985 hospitalized, 17 sudden death), 25 food, 18 dust/soils, and 35 other strains. Methods. The mouse neutralization assay determined isolate toxin type (56% BoNT/A, 32% BoNT/B). Amplified fragment-length polymorphism (AFLP) analysis of the isolates was combined with epidemiologic information. Results. The AFLP dendrogram, the largest to date, contained 154 clades; 52% of isolates clustered in just 2 clades, 1 BoNT/A (n = 418) and 1 BoNT/B (n = 145). These clades constituted an endemic C. botulinum population that produced the entire clinical spectrum of IB. Isolates from the patient’s home environment (dust/soil, honey) usually located to the same AFLP clade as the patient’s isolate, thereby identifying the likely source of infective spores. C. botulinum A(B) strains were identified in California for the first time. Conclusions. Combining molecular methods and epidemiological data created an effective tool that yielded novel insights into the genetic diversity of C. botulinum and the clinical spectrum, occurrence, and distribution of IB in California

    De novo subtype and strain identification of botulinum neurotoxin type B through toxin proteomics

    Get PDF
    Botulinum neurotoxins (BoNTs) cause the disease botulism, which can be lethal if untreated. There are seven known serotypes of BoNT, A–G, defined by their response to antisera. Many serotypes are distinguished into differing subtypes based on amino acid sequence, and many subtypes are further differentiated into toxin variants. Previous work in our laboratory described the use of a proteomics approach to distinguish subtype BoNT/A1 from BoNT/A2 where BoNT identities were confirmed after searching data against a database containing protein sequences of all known BoNT/A subtypes. We now describe here a similar approach to differentiate subtypes BoNT/B1, /B2, /B3, /B4, and /B5. Additionally, to identify new subtypes or hitherto unpublished amino acid substitutions, we created an amino acid substitution database covering every possible amino acid change. We used this database to differentiate multiple toxin variants within subtypes of BoNT/B1 and B2. More importantly, with our amino acid substitution database, we were able to identify a novel BoNT/B subtype, designated here as BoNT/B7. These techniques allow for subtype and strain level identification of both known and unknown BoNT/B rapidly with no DNA required

    Differentiation of Clostridium botulinum Serotype A Strains by Multiple-Locus Variable-Number Tandem-Repeat Analysis▿ †

    No full text
    Ten variable-number tandem-repeat (VNTR) regions identified within the complete genomic sequence of Clostridium botulinum strain ATCC 3502 were used to characterize 59 C. botulinum strains of the botulism neurotoxin A1 (BoNT/A1) to BoNT/A4 (BoNT/A1-A4) subtypes to determine their ability to discriminate among the serotype A strains. Two strains representing each of the C. botulinum serotypes B to G, including five bivalent strains, and two strains of the closely related species Clostridium sporogenes were also tested. Amplified fragment length polymorphism analyses revealed the genetic diversity among the serotypes and the high degree of similarity among many of the BoNT/A1 strains. The 10 VNTR markers amplified fragments within all of the serotype A strains but were less successful with strains of other serotypes. The composite multiple-locus VNTR analysis of the 59 BoNT/A1-A4 strains and 3 bivalent B strains identified 38 different genotypes. Thirty genotypes were identified among the 53 BoNT/A1 and BoNT/A1(B) strains, demonstrating discrimination below the subtype level. Contaminating DNA within crude toxin preparations of three BoNT/A subtypes (BoNT/A1 to BoNT/A3) also supported amplification of all of the VNTR regions. These markers provide clinical and forensics laboratories with a rapid, highly discriminatory tool to distinguish among C. botulinum BoNT/A1 strains for investigations of botulism outbreaks

    Analysis of Clostridium botulinum Serotype E Strains by Using Multilocus Sequence Typing, Amplified Fragment Length Polymorphism, Variable-Number Tandem-Repeat Analysis, and Botulinum Neurotoxin Gene Sequencingâ–¿

    No full text
    A total of 41 Clostridium botulinum serotype E strains from different geographic regions, including Canada, Denmark, Finland, France, Greenland, Japan, and the United States, were compared by multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) analysis, variable-number tandem-repeat (VNTR) analysis, and botulinum neurotoxin (bont) E gene sequencing. The strains, representing environmental, food-borne, and infant botulism samples collected from 1932 to 2007, were analyzed to compare serotype E strains from different geographic regions and types of botulism and to determine whether each of the strains contained the transposon-associated recombinase rarA, involved with bont/E insertion. MLST examination using 15 genes clustered the strains into several clades, with most members within a cluster sharing the same BoNT/E subtype (BoNT/E1, E2, E3, or E6). Sequencing of the bont/E gene identified two new variants (E7, E8) that showed regions of recombination with other E subtypes. The AFLP dendrogram clustered the 41 strains similarly to the MLST dendrogram. Strains that could not be differentiated by AFLP, MLST, or bont gene sequencing were further examined using three VNTR regions. Both intact and split rarA genes were amplified by PCR in each of the strains, and their identities were confirmed in 11 strains by amplicon sequencing. The findings suggest that (i) the C. botulinum serotype E strains result from the targeted insertion of the bont/E gene into genetically conserved bacteria and (ii) recombination events (not random mutations) within bont/E result in toxin variants or subtypes within strains

    The Transcription Factor Encyclopedia

    Get PDF
    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe .Medical Genetics, Department ofMedicine, Faculty ofMolecular Medicine and Therapeutics, Centre forScience, Faculty ofNon UBCReviewedFacult

    COVID-19-related mortality in kidney transplant and dialysis patients: Results of the ERACODA collaboration

    No full text
    Background. Patients on kidney replacement therapy comprise a vulnerable population and may be at increased risk of death from coronavirus disease 2019 (COVID-19). Currently, only limited data are available on outcomes in this patient population. Methods. We set up the ERACODA (European Renal Association COVID-19 Database) database, which is specifically designed to prospectively collect detailed data on kidney transplant and dialysis patients with COVID-19. For this analysis, patients were included who presented between 1 February and 1 May 2020 and had complete information available on the primary outcome parameter, 28-day mortality. Results. Of the 1073 patients enrolled, 305 (28%) were kidney transplant and 768 (72%) dialysis patients with a mean age of 60 6 13 and 67 6 14 years, respectively. The 28-day probability of death was 21.3% [95% confidence interval (95% CI) 14.3\u201330.2%] in kidney transplant and 25.0% (95% CI 20.2\u201330.0%) in dialysis patients. Mortality was primarily associated with advanced age in kidney transplant patients, and with age and frailty in dialysis patients. After adjusting for sex, age and frailty, in-hospital mortality did not significantly differ between transplant and dialysis patients [hazard ratio (HR) 0.81, 95% CI 0.59\u20131.10, P \ubc 0.18]. In the subset of dialysis patients who were a candidate for transplantation (n \ubc 148), 8 patients died within 28 days, as compared with 7 deaths in 23 patients who underwent a kidney transplantation <1 year before presentation (HR adjusted for sex, age and frailty 0.20, 95% CI 0.07\u20130.56, P < 0.01). Conclusions. The 28-day case-fatality rate is high in patients on kidney replacement therapy with COVID-19 and is primarily driven by the risk factors age and frailty. Furthermore, in the first year after kidney transplantation, patients may be at increased risk of COVID-19-related mortality as compared with dialysis patients on the waiting list for transplantation. This information is important in guiding clinical decision-making, and for informing the public and healthcare authorities on the COVID-19-related mortality risk in kidney transplant and dialysis patients

    Association of obesity with 3-month mortality in kidney failure patients with COVID-19

    No full text
    Background: In the general population with coronavirus disease 2019 (COVID-19), obesity is associated with an increased risk of mortality. Given the typically observed obesity paradox among patients on kidney function replacement therapy (KFRT), especially dialysis patients, we examined the association of obesity with mortality among dialysis patients or living with a kidney transplant with COVID-19. Methods: Data from the European Renal Association COVID-19 Database (ERACODA) were used. KFRT patients diagnosed with COVID-19 between 1 February 2020 and 31 January 2021 were included. The association of Quetelet's body mass index (BMI) (kg/m2), divided into: <18.5 (lean), 18.5-24.9 (normal weight), 25-29.9 (overweight), 30-34.9 (obese I) and ≥35 (obese II/III), with 3-month mortality was investigated using Cox proportional-hazards regression analyses. Results: In 3160 patients on KFRT (mean age: 65 years, male: 61%), 99 patients were lean, 1151 normal weight (reference), 1160 overweight, 525 obese I and 225 obese II/III. During follow-up of 3 months, 28, 20, 21, 23 and 27% of patients died in these categories, respectively. In the fully adjusted model, the hazard ratios (HRs) for 3-month mortality were 1.65 [95% confidence interval (CI): 1.10, 2.47], 1 (ref.), 1.07 (95% CI: 0.89, 1.28), 1.17 (95% CI: 0.93, 1.46) and 1.71 (95% CI: 1.27, 2.30), respectively. Results were similar among dialysis patients (N = 2343) and among those living with a kidney transplant (N = 817) (Pinteraction = 0.99), but differed by sex (Pinteraction = 0.019). In males, the HRs for the association of aforementioned BMI categories with 3-month mortality were 2.07 (95% CI: 1.22, 3.52), 1 (ref.), 0.97 (95% CI: 0.78. 1.21), 0.99 (95% CI: 0.74, 1.33) and 1.22 (95% CI: 0.78, 1.91), respectively, and in females corresponding HRs were 1.34 (95% CI: 0.70, 2.57), 1 (ref.), 1.31 (95% CI: 0.94, 1.85), 1.54 (95% CI: 1.05, 2.26) and 2.49 (95% CI: 1.62, 3.84), respectively. Conclusion: In KFRT patients with COVID-19, on dialysis or a kidney transplant, obesity is associated with an increased risk of mortality at 3 months. This is in contrast to the obesity paradox generally observed in dialysis patients. Additional studies are required to corroborate the sex difference in the association of obesity with mortality
    corecore