136 research outputs found

    Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis

    Get PDF
    Antibodies to citrulline-modifi ed proteins have a high diagnostic value in rheumatoid arthritis (RA). However, their biological role in disease development is still unclear. To obtain insight into this question, a panel of mouse monoclonal antibodies was generated against a major triple helical collagen type II (CII) epitope (position 359 – 369; ARGLTGRPGDA) with or without arginines modifi ed by citrullination. These antibodies bind cartilage and synovial tissue, and mediate arthritis in mice. Detection of citrullinated CII from RA patients ’ synovial fl uid demonstrates that cartilage-derived CII is indeed citrullinated in vivo. The structure determination of a Fab fragment of one of these antibodies in complex with a citrullinated peptide showed a surprising beta -turn conformation of the peptide and provided information on citrulline recognition. Based on these findings, we propose that autoimmunity to CII, leading to the production of antibodies specific for both native and citrullinated CII, is an important pathogenic factor in the development of RA

    Identification of Natural Bispecific Antibodies against Cyclic Citrullinated Peptide and Immunoglobulin G in Rheumatoid Arthritis

    Get PDF
    BACKGROUND: Previous studies indicate that natural bispecific antibodies can be readily produced in vivo when the body is simultaneously stimulated with 2 distinct antigens. Patients with rheumatoid arthritis (RA) usually exhibit persistent immune responses to various autoantigens, raising the possibility that natural bispecific antibodies against 2 distinct autoantigens might exist. METHODOLOGY/PRINCIPAL FINDINGS: We identified the presence of natural bispecific antibodies against cyclic citrullinated peptide (CCP) and immunoglobulin G (IgG) in RA patients' sera by means of a double-antigen sandwich enzyme-linked immunosorbent assay (ELISA). The spontaneous emergence of bispecific antibodies was confirmed by mixing different proportions of 1 anti-CCP-positive serum and 1 rheumatoid factor (RF)-positive serum in vitro. Among the tested samples, positive correlations were found between the presence of bispecific antibodies and both IgG4 anti-CCP antibodies and IgG4 RF (r = 0.507, p<0.001 and r = 0.249, p = 0.044, respectively), suggesting that the IgG4 subclass is associated with this phenomenon. Furthermore, bispecific antibodies were selectively generated when several anti-CCP- and RF-positive sera were mixed pairwise, indicating that factors other than the monospecific antibody titers may also contribute to the production of the natural bispecific antibodies. CONCLUSIONS/SIGNIFICANCE: We successfully identified the presence of natural bispecific antibodies. Our results suggest that these antibodies originate from anti-CCP and RF in the sera of RA patients. The natural occurrence of bispecific antibodies in human diseases may provide new insights for a better understanding of the diseases. Further investigations are needed to elucidate their precise generation mechanisms and explore their clinical significance in disease development and progression in a larger study population

    A Functional Genomics Approach to Establish the Complement of Carbohydrate Transporters in Streptococcus pneumoniae

    Get PDF
    The aerotolerant anaerobe Streptococcus pneumoniae is part of the normal nasopharyngeal microbiota of humans and one of the most important invasive pathogens. A genomic survey allowed establishing the occurrence of twenty-one phosphotransferase systems, seven carbohydrate uptake ABC transporters, one sodium∶solute symporter and a permease, underlining an exceptionally high capacity for uptake of carbohydrate substrates. Despite high genomic variability, combined phenotypic and genomic analysis of twenty sequenced strains did assign the substrate specificity only to two uptake systems. Systematic analysis of mutants for most carbohydrate transporters enabled us to assign a phenotype and substrate specificity to twenty-three transport systems. For five putative transporters for galactose, pentoses, ribonucleosides and sulphated glycans activity was inferred, but not experimentally confirmed and only one transport system remains with an unknown substrate and lack of any functional annotation. Using a metabolic approach, 80% of the thirty-two fermentable carbon substrates were assigned to the corresponding transporter. The complexity and robustness of sugar uptake is underlined by the finding that many transporters have multiple substrates, and many sugars are transported by more than one system. The present work permits to draw a functional map of the complete arsenal of carbohydrate utilisation proteins of pneumococci, allows re-annotation of genomic data and might serve as a reference for related species. These data provide tools for specific investigation of the roles of the different carbon substrates on pneumococcal physiology in the host during carriage and invasive infection
    corecore