24 research outputs found

    Lovastatin sensitized human glioblastoma cells to TRAIL-induced apoptosis

    Get PDF
    Synergy study with chemotherapeutic agents is a common in vitro strategy in the search for effective cancer therapy. For non-chemotherapeutic agents, efficacious synergistic effects are uncommon. Here, we have examined two non-chemotherapeutic agents for synergistic effects: lovastatin and Tumor Necrosis Factor (TNF)-related apoptosis-inducing ligand (TRAIL) for synergistic effects; on three human malignant glioblastoma cell lines, M059K, M59J, and A172. Cells treated with lovastatin plus TRAIL for 48 h showed 50% apoptotic cell death, whereas TRAIL alone (1,000 ng/ml) did not, suggesting that lovastatin sensitized the glioblastoma cells to TRAIL attack. Cell cycle analysis indicated that lovastatin increased G0–G1 arrest in these cells. Annexin V study demonstrated that apoptosis was the predominant mode of cell death. We conclude that the combination of lovastatin and TRAIL enhances apoptosis synergistically. Moreover, lovastatin sensitized glioblastoma cells to TRAIL, suggesting a new strategy to treat glioblastoma

    Simvastatin and purine analogs have a synergic effect on apoptosis of chronic lymphocytic leukemia cells

    Get PDF
    Despite many therapeutic regimens introduced recently, chronic lymphocytic leukemia (CLL) is still an incurable disorder. Thus, there is an urgent need to discover novel, less toxic and more effective drugs for CLL patients. In this study, we attempted to assess simvastatin, widely used as a cholesterol-lowering drug, both as a single agent and in combination with purine analogs—fludarabine and cladribine—in terms of its effect on apoptosis and DNA damage of CLL cells. The experiments were done in ex vivo short-term cell cultures of blood and bone marrow cells from newly diagnosed untreated patients. We analyzed expression of active caspase-3 and the BCL-2/BAX ratio as markers of apoptosis and the expression of phosphorylated histone H2AX (named γH2AX) and activated ATM kinase (ataxia telangiectasia mutated kinase), reporters of DNA damage. Results of our study revealed that simvastatin induced apoptosis of CLL cells concurrently with lowering of BCL-2/BAX ratio, and its pro-apoptotic effect is tumor-specific, not affecting normal lymphocytes. We observed that combinations of simvastatin+fludarabine and simvastatin+cladribine had a synergic effect in inducing apoptosis. Interestingly, the rate of apoptosis caused by simvastatin alone and in combination was independent of markers of disease progression like ZAP-70 and CD38 expression or clinical stage according to Rai classification. We have also seen an increase in γH2AX expression in parallel with activation of ATM in most of the analyzed samples. The results suggest that simvastatin can be used in the treatment of CLL patients as a single agent as well as in combination with purine analogs, being equally effective both in high-risk and good-prognosis patients. One of the mechanisms of simvastatin action is inducing DNA damage that ultimately leads to apoptosis

    The Roles of Cholesterol and Its Metabolites in Normal and Malignant Hematopoiesis.

    Get PDF
    Hematopoiesis is sustained throughout life by hematopoietic stem cells (HSCs) that are capable of self-renewal and differentiation into hematopoietic progenitor cells (HPCs). There is accumulating evidence that cholesterol homeostasis is an important factor in the regulation of hematopoiesis. Increased cholesterol levels are known to promote proliferation and mobilization of HSCs, while hypercholesterolemia is associated with expansion of myeloid cells in the peripheral blood and links hematopoiesis with cardiovascular disease. Cholesterol is a precursor to steroid hormones, oxysterols, and bile acids. Among steroid hormones, 17β-estradiol (E2) induces HSC division and E2-estrogen receptor α (ERα) signaling causes sexual dimorphism of HSC division rate. Oxysterols are oxygenated derivatives of cholesterol and key substrates for bile acid synthesis and are considered to be bioactive lipids, and recent studies have begun to reveal their important roles in the hematopoietic and immune systems. 27-Hydroxycholesterol (27HC) acts as an endogenous selective estrogen receptor modulator and induces ERα-dependent HSC mobilization and extramedullary hematopoiesis. 7α,25-dihydroxycholesterol (7α,25HC) acts as a ligand for Epstein-Barr virus-induced gene 2 (EBI2) and directs migration of B cells in the spleen during the adaptive immune response. Bile acids serve as chemical chaperones and alleviate endoplasmic reticulum stress in HSCs. Cholesterol metabolism is dysregulated in hematologic malignancies, and statins, which inhibit de novo cholesterol synthesis, have cytotoxic effects in malignant hematopoietic cells. In this review, recent advances in our understanding of the roles of cholesterol and its metabolites as signaling molecules in the regulation of hematopoiesis and hematologic malignancies are summarized

    Simvastatin impairs humoral and cell-mediated immunity in mice by inhibiting lymphocyte homing, T-cell activation and antigen cross-presentation.

    No full text
    Statins block the activity of HMG-CoA reductase, which catalyses the production of mevalonate, an intermediate in cholesterol biosynthesis, which is also a precursor of isoprenoids. In addition to lowering circulating cholesterol, these drugs display anti- inflammatory and immunomodulatory activities in vitro; however, their effects on the development of adaptive immune responses in vivo, as well as the underlying mechan- isms, are as yet largely unknown. Here we investigated the outcome of simvastatin treatment on a number of processes, which together orchestrate adaptive immunity to specific antigen. Simvastatin treatment resulted in a marked reduction of T and B cells in spleen, lymph nodes and peripheral blood in mice. This effect could be ascribed principally to an impairment of lymphocyte homing to secondary lymphoid organs. In addition, simvastatin was found to strongly inhibit T-cell responses to the MHCI restricted hen ovalbumin peptide antigen SIINFEKL and to impair ovalbumin uptake and cross-presen- tation by MHCI. Simvastatin also suppressed antibody responses to immunization with ovalbumin and delayed-type hypersensitivity to allergens. These activities could be largely accounted for by the simvastatin-dependent inhibition of HMG-CoA reductase. The data provide novel mechanistic insight into the activities of simvastatin in the highly complex context of the immune response
    corecore