1,149 research outputs found
Vitamin K status, supplementation and vascular disease: a systematic review and meta-analysis
Objectives: Vascular stiffness (VS) and vascular calcification (VC) are surrogate markers of vascular health associated with cardiovascular events. Vitamin K-dependent proteins (VKDP) are associated with VS and VC and require vitamin K for activity. We conducted a systematic review and meta-analysis of: (1) the effect of vitamin K supplementation on VS and VC and (2) association of inactive VKDP levels with incident cardiovascular disease and mortality.
Methods: Two authors searched MEDLINE and Embase databases and Cochrane and ISRCTN registries for studies of vitamin K clinical trials that measured effects on VC, VS or VKDP and longitudinal studies assessing effect of VKDP on incident CVD or mortality. Random effects meta-analyses were performed.
Results: Thirteen controlled clinical trials (n=2162) and 14 longitudinal studies (n=10 726) met prespecified inclusion criteria. Vitamin K supplementation was associated with significant reduction in VC (−9.1% (95% CI −17.7 to −0.5); p=0.04) and VKDP (desphospho-uncarboxylated matrix Gla protein; −44.7% (95% CI −65.1 to −24.3), p<0.0001) and uncarboxylated osteocalcin; −12.0% (95% CI −16.7 to −7.2), p<0.0001) compared with control, with a non-significant improvement in VS. In longitudinal studies with median follow-up of 7.8 (IQR 4.9–11.3) years, VKDP levels were associated with a combined endpoint of CVD or mortality (HR 0.45 (95% CI 0.07 to 0.83), p=0.02).
Conclusions: Supplementation with vitamin K significantly reduced VC, but not VS, compared with control. The conclusions drawn are limited by small numbers of studies with substantial heterogeneity. VKDP was associated with combined endpoint of CVD or mortality. Larger clinical trials of effect of vitamin K supplementation to improve VC, VS and long-term cardiovascular health are warranted.
Trial registration number: CRD42017060344
A robust sample of submillimetre galaxies: constraints on the prevalence of dusty, high-redshift starbursts
Peer reviewe
Recommended from our members
Near-Earth asteroid sample return missions
The rate of discovery of new NEAs and the success of D-S 1 and NEAR-Shoemaker, suggest that sample return from NEAs is now technically feasible. Here we present a summary of a recent workshop on the topic
Melting of the glacier base during a small-volume subglacial rhyolite eruption: evidence from Blahnukur, Iceland.
Although observations of recent volcanic eruptions beneath Vatnajokull, Iceland have improved the understanding of ice deformation and meltwater drainage, little is known about the processes that occur at the glacier base. We present observations of the products of a small-volume, effusive subglacial rhyolite eruption at Blahnukur, Torfajokull, Iceland. Lava bodies, typically 7 m long, have unusual conical morphologies and columnar joint orientations that suggest emplacement within cavities melted into the base of a glacier. Cavities appear to have been steep-walled and randomly distributed. These features can be explained by a simple model of conductive heat loss during the ascent of a lava body to the glacier base. The released heat melts a cavity in the overlying ice. The development of vapour-escape pipes in the waterlogged, permeable breccias surrounding the lava allows rapid heat transfer between lava and ice. The formed meltwater percolates into the breccias, recharging the cooling system and leaving a steam-filled cavity. The slow ascent rates of intrusive rhyolitic magma bodies provide ample time for a cavity to be melted in the ice above, even during the final 10 m of ascent to the glacier base. An equilibrium cavity size is calculated at which melting is balanced by creep closure. This is dependent upon the heat input and the difference between glaciostatic and cavity pressure. The cavity sizes inferred from Blahnukur are consistent with a pressure differential of 2-4 MPa, suggesting that the ice was at least 200 m thick. This is consistent with the volcanic stratigraphy, which indicates that the ice exceeded 350 m in thickness. Although this is the first time that a subglacial cavity system of this type has been reconstructed from an ancient volcanic sequence, it shares many characteristics with the modern firn cave system formed by fumarolic melting within the summit crater of Mount Rainier, Washington. At both localities, it appears that localised heating at the glacier base has resulted in heterogeneous melting patterns. Despite the different rheological properties of ice and firn, similar patterns of cavity roof deformation are inferred. The development of low-pressure subglacial cavities in regions of high heat flux may influence the trajectory of rising magma, with manifold implications for eruptive mechanisms and resultant subglacial volcanic landforms
Antihydrogen formation dynamics in a multipolar neutral anti-atom trap
Antihydrogen production in a neutral atom trap formed by an octupole-based
magnetic field minimum is demonstrated using field-ionization of weakly bound
anti-atoms. Using our unique annihilation imaging detector, we correlate
antihydrogen detection by imaging and by field-ionization for the first time.
We further establish how field-ionization causes radial redistribution of the
antiprotons during antihydrogen formation and use this effect for the first
simultaneous measurements of strongly and weakly bound antihydrogen atoms.
Distinguishing between these provides critical information needed in the
process of optimizing for trappable antihydrogen. These observations are of
crucial importance to the ultimate goal of performing CPT tests involving
antihydrogen, which likely depends upon trapping the anti-atom
Liquid-Solid Transition of Hard Spheres Under Gravity
We investigate the liquid-solid transition of two dimensional hard spheres in
the presence of gravity. We determine the transition temperature and the
fraction of particles in the solid regime as a function of temperature via
Even-Driven molecular dynamics simulations and compare them with the
theoretical predictions. We then examine the configurational statistics of a
vibrating bed from the view point of the liquid-solid transition by explicitly
determining the transition temperature and the effective temperature, T, of the
bed, and present a relation between T and the vibration strength.Comment: 14 total pages, 4 figure
Search For Trapped Antihydrogen
We present the results of an experiment to search for trapped antihydrogen
atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator.
Sensitive diagnostics of the temperatures, sizes, and densities of the trapped
antiproton and positron plasmas have been developed, which in turn permitted
development of techniques to precisely and reproducibly control the initial
experimental parameters. The use of a position-sensitive annihilation vertex
detector, together with the capability of controllably quenching the
superconducting magnetic minimum trap, enabled us to carry out a
high-sensitivity and low-background search for trapped synthesised antihydrogen
atoms. We aim to identify the annihilations of antihydrogen atoms held for at
least 130 ms in the trap before being released over ~30 ms. After a three-week
experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9
positrons to produce 6 10^5 antihydrogen atoms, we have identified six
antiproton annihilation events that are consistent with the release of trapped
antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts,
is incompatible with this observation at a significance of 5.6 sigma. Extensive
simulations predict that an alternative source of annihilations, the escape of
mirror-trapped antiprotons, is highly unlikely, though this possibility has not
yet been ruled out experimentally.Comment: 12 pages, 7 figure
Comparison of some Reduced Representation Approximations
In the field of numerical approximation, specialists considering highly
complex problems have recently proposed various ways to simplify their
underlying problems. In this field, depending on the problem they were tackling
and the community that are at work, different approaches have been developed
with some success and have even gained some maturity, the applications can now
be applied to information analysis or for numerical simulation of PDE's. At
this point, a crossed analysis and effort for understanding the similarities
and the differences between these approaches that found their starting points
in different backgrounds is of interest. It is the purpose of this paper to
contribute to this effort by comparing some constructive reduced
representations of complex functions. We present here in full details the
Adaptive Cross Approximation (ACA) and the Empirical Interpolation Method (EIM)
together with other approaches that enter in the same category
Navier-Stokes transport coefficients of -dimensional granular binary mixtures at low density
The Navier-Stokes transport coefficients for binary mixtures of smooth
inelastic hard disks or spheres under gravity are determined from the Boltzmann
kinetic theory by application of the Chapman-Enskog method for states near the
local homogeneous cooling state. It is shown that the Navier-Stokes transport
coefficients are not affected by the presence of gravity. As in the elastic
case, the transport coefficients of the mixture verify a set of coupled linear
integral equations that are approximately solved by using the leading terms in
a Sonine polynomial expansion. The results reported here extend previous
calculations [V. Garz\'o and J. W. Dufty, Phys. Fluids {\bf 14}, 1476 (2002)]
to an arbitrary number of dimensions. To check the accuracy of the
Chapman-Enskog results, the inelastic Boltzmann equation is also numerically
solved by means of the direct simulation Monte Carlo method to evaluate the
diffusion and shear viscosity coefficients for hard disks. The comparison shows
a good agreement over a wide range of values of the coefficients of restitution
and the parameters of the mixture (masses and sizes).Comment: 6 figures, to be published in J. Stat. Phy
Single-neutron transfer from 11Be gs via the (p,d) reaction with a radioactive beam
The 11Be(p,d)10Be reaction has been performed in inverse kinematics with a
radioactive 11Be beam of E/A = 35.3 MeV. Angular distributions for the 0+
ground state, the 2+, 3.37 MeV state and the multiplet of states around 6 MeV
in 10Be were measured at angles up to 16 deg CM by detecting the 10Be in a
dispersion-matched spectrometer and the coincident deuterons in a silicon
array. Distorted wave and coupled-channels calculations have been performed to
investigate the amount of 2+ core excitation in 11Be gs. The use of "realistic"
11Be wave functions is emphasised and bound state form factors have been
obtained by solving the particle-vibration coupling equations. This calculation
gives a dominant 2s component in the 11Be gs wave function with a 16% [2+ x 1d]
core excitation admixture. Cross sections calculated with these form factors
are in good agreement with the present data. The Separation Energy prescription
for the bound state wave function also gives satisfactory fits to the data, but
leads to a significantly larger [2 x 1d] component in 11Be gs.Comment: 39 pages, 12 figures. Accepted for publication in Nuclear Physics A.
Added minor corrections made in proof to pages 26 and 3
- …