24 research outputs found

    Utilization of mechanical power and associations with clinical outcomes in brain injured patients. a secondary analysis of the extubation strategies in neuro-intensive care unit patients and associations with outcome (ENIO) trial

    Get PDF
    BackgroundThere is insufficient evidence to guide ventilatory targets in acute brain injury (ABI). Recent studies have shown associations between mechanical power (MP) and mortality in critical care populations. We aimed to describe MP in ventilated patients with ABI, and evaluate associations between MP and clinical outcomes.MethodsIn this preplanned, secondary analysis of a prospective, multi-center, observational cohort study (ENIO, NCT03400904), we included adult patients with ABI (Glasgow Coma Scale <= 12 before intubation) who required mechanical ventilation (MV) >= 24 h. Using multivariable log binomial regressions, we separately assessed associations between MP on hospital day (HD)1, HD3, HD7 and clinical outcomes: hospital mortality, need for reintubation, tracheostomy placement, and development of acute respiratory distress syndrome (ARDS).ResultsWe included 1217 patients (mean age 51.2 years [SD 18.1], 66% male, mean body mass index [BMI] 26.3 [SD 5.18]) hospitalized at 62 intensive care units in 18 countries. Hospital mortality was 11% (n = 139), 44% (n = 536) were extubated by HD7 of which 20% (107/536) required reintubation, 28% (n = 340) underwent tracheostomy placement, and 9% (n = 114) developed ARDS. The median MP on HD1, HD3, and HD7 was 11.9 J/min [IQR 9.2-15.1], 13 J/min [IQR 10-17], and 14 J/min [IQR 11-20], respectively. MP was overall higher in patients with ARDS, especially those with higher ARDS severity. After controlling for same-day pressure of arterial oxygen/fraction of inspired oxygen (P/F ratio), BMI, and neurological severity, MP at HD1, HD3, and HD7 was independently associated with hospital mortality, reintubation and tracheostomy placement. The adjusted relative risk (aRR) was greater at higher MP, and strongest for: mortality on HD1 (compared to the HD1 median MP 11.9 J/min, aRR at 17 J/min was 1.22, 95% CI 1.14-1.30) and HD3 (1.38, 95% CI 1.23-1.53), reintubation on HD1 (1.64; 95% CI 1.57-1.72), and tracheostomy on HD7 (1.53; 95%CI 1.18-1.99). MP was associated with the development of moderate-severe ARDS on HD1 (2.07; 95% CI 1.56-2.78) and HD3 (1.76; 95% CI 1.41-2.22).ConclusionsExposure to high MP during the first week of MV is associated with poor clinical outcomes in ABI, independent of P/F ratio and neurological severity. Potential benefits of optimizing ventilator settings to limit MP warrant further investigation

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Fungal Infections in Critically Ill COVID-19 Patients: Inevitabile Malum

    No full text
    Patients with severe COVID-19 belong to a population at high risk of invasive fungal infections (IFIs), with a reported incidence of IFIs in critically ill COVID-19 patients ranging between 5% and 26.7%. Common factors in these patients, such as multiple organ failure, immunomodulating/immunocompromising treatments, the longer time on mechanical ventilation, renal replacement therapy or extracorporeal membrane oxygenation, make them vulnerable candidates for fungal infections. In addition to that, SARS-CoV2 itself is associated with significant dysfunction in the patient’s immune system involving both innate and acquired immunity, with reduction in both CD4+ T and CD8+ T lymphocyte counts and cytokine storm. The emerging question is whether SARS-CoV-2 inherently predisposes critically ill patients to fungal infections or the immunosuppressive therapy constitutes the igniting factor for invasive mycoses. To approach the dilemma, one must consider the unique pathogenicity of SARS-CoV-2 with the deranged immune response it provokes, review the well-known effects of immunosuppressants and finally refer to current literature to probe possible causal relationships, synergistic effects or independent risk factors. In this review, we aimed to identify the prevalence, risk factors and mortality associated with IFIs in mechanically ventilated patients with COVID-19. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Dexamethasone in the treatment of COVID-19: Primus inter pares?

    No full text
    Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread globally, becoming a huge public health challenge. Even though the vast majority of patients are asymptomatic, some patients present with pneumonia, acute respiratory distress syndrome (ARDS), septic shock, and death. It has been shown in several studies that the severity and clinical outcomes are related to dysregulated antiviral immunity and enhanced and persistent systemic inflammation. Corticosteroids have been used for the treatment of COVID-19 patients, as they are reported to elicit benefits by reducing lung inflammation and inflammation-induced lung injury. Dexamethasone has gained a major role in the therapeutic algorithm of patients with COVID-19 pneumonia requiring supplemental oxygen or on mechanical ventilation. Its wide anti-inflammatory action seems to form the basis for its beneficial action, taming the overwhelming “cytokine storm”. Amid a plethora of scientific research on therapeutic options for COVID-19, there are still unanswered questions about the right timing, right dosing, and right duration of the corticosteroid treatment. The aim of this review article was to summarize the data on the dexamethasone treatment in COVID-19 and outline the clinical considerations of corticosteroid therapy in these patients. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
    corecore