531 research outputs found
Structure of a Plane Shock Layer
The structure of a plane shock wave is discussed and the expected range of applicability of the Navier‐Stokes equations within the shock layer is outlined. The shock profiles are computed using the Bhatnagar‐Gross‐Krook model of the Boltzmann equation and a uniformly converging iteration scheme starting from the Navier‐Stokes solution. It is shown that the Navier‐Stokes solution remains a good approximation in the high‐pressure region of the shock layer up to approximately the point of maximum stress for all shock strengths. In the low‐pressure region, the correct profiles deviate with increasing shock strength from the Navier‐Stokes solution. The physical significance of the kinetic model used and the relation of the present study to previous theoretical and experimental work is discussed
Theoretical and Experimental Aspects of the Shock Structure Problem
Flow of rarefied gases - Shock wave structure proble
Effects of dishwashing detergents residues on redox status and cell proliferation in mice liver and kidney
Background: Commonly known for their cleaning and disinfecting properties, dishwashing detergents containing anionic surfactants can be potentially toxic due to misuse. This study aims to investigate the possible harmful effects of detergents residues persisting on utensils after dishwashing.Methods: Residues were collected after cleaning the utensils in 100 mL of water from 100 households in Beirut, Lebanon. After anionic surfactant determination, water with detergent residues (WDR) was added to drinking water of white mice versus tap water as control: G1 (TW for 2 months), G2 (WDR for 2 months), G3 (TW for 3 months) and G4 (WDR for 3 months), N=6 for each group. Animals were then sacrificed. Biopsies from liver and kidneys were taken for histological examination or preserved at -80°C for biochemical analysis of lipid peroxidation, superoxide dismutase activity, and expression of PI3K/AKT/mTOR pathway proteins by western blotting.Results: Our results showed no significant difference in body weight or histological alteration in groups given WDR versus TW groups. An increase of LP (30%) and a decrease of SOD activity (25%) were noted in the liver tissue of G2 and G4 versus G1 and G3 respectively (p<0.05). In addition, p-AKT and p-mTOR proteins expression regulating cell proliferation were significantly increased in the liver of G4 versus G3 (p<0.05).Conclusions: We concluded that traces of detergents on utensils do not cause an acute pathology, but they could cause oxidative stress to the liver and an over-expression of cancer pathway over a relative long period of time
Recommended from our members
Evaluation of Turbulence Models Performance in Predicting Incipient Cavitation in an Enlarged Step-Nozzle
Predictive capability of RANS and LES models to calculate incipient cavitation of water in a step nozzle is assessed. The RANS models namely, Realizable k-?, SST k-? and Reynolds Stress Model did not predict any cavitation, due to the limitation of RANS models to predict the low pressure vortex cores. LES WALE model was able to predict the cavitation by capturing the shear layer instability and vortex shedding. The performance of a barotropic cavitation model and Rayleigh-Plesset-based cavitation models was compared using WALE model. Although the phase change formulation is different in these models, the predicted cavitation and flow field were not significantly different
Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder
The first systematic observations of the middle atmosphere of Mars (35–80km) with the Mars Climate Sounder (MCS) show dramatic patterns of diurnal thermal variation, evident in retrievals of temperature and water ice opacity. At the time of writing, the data set of MCS limb retrievals is sufficient for spectral analysis within a limited range of latitudes and seasons. This analysis shows that these thermal variations are almost exclusively associated with a diurnal thermal tide. Using a Martian general circulation model to extend our analysis, we show that the diurnal thermal tide dominates these patterns for all latitudes and all seasons
Recommended from our members
The Parkinson's progression markers initiative (PPMI) - establishing a PD biomarker cohort.
ObjectiveThe Parkinson's Progression Markers Initiative (PPMI) is an observational, international study designed to establish biomarker-defined cohorts and identify clinical, imaging, genetic, and biospecimen Parkinson's disease (PD) progression markers to accelerate disease-modifying therapeutic trials.MethodsA total of 423 untreated PD, 196 Healthy Control (HC) and 64 SWEDD (scans without evidence of dopaminergic deficit) subjects were enrolled at 24 sites. To enroll PD subjects as early as possible following diagnosis, subjects were eligible with only asymmetric bradykinesia or tremor plus a dopamine transporter (DAT) binding deficit on SPECT imaging. Acquisition of data was standardized as detailed at www.ppmi-info.org.ResultsApproximately 9% of enrolled subjects had a single PD sign at baseline. DAT imaging excluded 16% of potential PD subjects with SWEDD. The total MDS-UPDRS for PD was 32.4 compared to 4.6 for HC and 28.2 for SWEDD. On average, PD subjects demonstrated 45% and 68% reduction in mean striatal and contralateral putamen Specific Binding Ratios (SBR), respectively. Cerebrospinal fluid (CSF) was acquired from >97% of all subjects. CSF (PD/HC/SWEDD pg/mL) α-synuclein (1845/2204/2141) was reduced in PD vs HC or SWEDD (P < 0.03). Similarly, t-tau (45/53) and p-tau (16/18) were reduced in PD versus HC (P < 0.01).InterpretationPPMI has detailed the biomarker signature for an early PD cohort defined by clinical features and imaging biomarkers. This strategy provides the framework to establish biomarker cohorts and to define longitudinal progression biomarkers to support future PD treatment trials
Understanding the early evolutionary stages of a tandem drosophila melanogaster-specific gene family: A structural and functional population study
Gene families underlie genetic innovation and phenotypic diversification. However, our understanding of the early genomic and functional evolution of tandemly arranged gene families remains incomplete as paralog sequence similarity hinders their accurate characterization. The Drosophila melanogaster-specific gene family Sdic is tandemly repeated and impacts sperm competition. We scrutinized Sdic in 20 geographically diverse populations using reference-quality genome assemblies, read-depth methodologies, and qPCR, finding that ∼90% of the individuals harbor 3-7 copies as well as evidence of population differentiation. In strains with reliable gene annotations, copy number variation (CNV) and differential transposable element insertions distinguish one structurally distinct version of the Sdic region per strain. All 31 annotated copies featured protein-coding potential and, based on the protein variant encoded, were categorized into 13 paratypes differing in their 30 ends, with 3-5 paratypes coexisting in any strain examined. Despite widespread gene conversion, the only copy present in all strains has functionally diverged at both coding and regulatory levels under positive selection. Contrary to artificial tandem duplications of the Sdic region that resulted in increasedmale expression, CNV in cosmopolitan strains did not correlate with expression levels, likely as a result of differential genome modifier composition. Duplicating the region did not enhance sperm competitiveness, suggesting a fitness cost at high expression levels or a plateau effect. Beyond facilitating a minimally optimal expression level, Sdic CNV acts as a catalyst of protein and regulatory diversity, showcasing a possible evolutionary path recently formed tandemmultigene families can follow toward long-term consolidation in eukaryotic genomes
Validation of Serum Neurofilament Light Chain as a Biomarker of Parkinson's Disease Progression
Background: The objective of this study
was to assess neurofilament light chain as a Parkinson’s
disease biomarker.
Methods: We quantified neurofilament light chain in
2 independent cohorts: (1) longitudinal cerebrospinal fluid
samples from the longitudinal de novo Parkinson’s disease cohort and (2) a large longitudinal cohort with serum
samples from Parkinson’s disease, other cognate/neurodegenerative disorders, healthy controls, prodromal conditions, and mutation carriers.
Results: In the Parkinson’s Progression Marker Initiative
cohort, mean baseline serum neurofilament light chain
was higher in Parkinson’s disease patients (13 � 7.2
pg/mL) than in controls (12 � 6.7 pg/mL), P = 0.0336.
Serum neurofilament light chain increased longitudinally in
Parkinson’s disease patients versus controls (P < 0.01).
Motor scores were positively associated with neurofilament light chain, whereas some cognitive scores
showed a negative association.
Conclusions: Neurofilament light chain in serum samples is increased in Parkinson’s disease patients versus healthy controls, increases over time and with age,
and correlates with clinical measures of Parkinson’s
disease severity. Although the specificity of neurofilament light chain for Parkinson’s disease is low, it
is the first blood-based biomarker candidate that could
support disease stratification of Parkinson’s disease
versus other cognate/neurodegenerative disorders,
track clinical progression, and possibly assess responsiveness to neuroprotective treatments. However, use of
neurofilament light chain as a biomarker of response
to neuroprotective interventions remains to be assessed
Validation of the Aura Microwave Limb Sounder Temperature and Geopotential Height Measurements
Global satellite observations of temperature and geopotential height (GPH) from the Microwave Limb Sounder (MLS) on the EOS Aura spacecraft are discussed. The precision, resolution, and accuracy of the data produced by the MLS version 2.2 processing algorithms are quantified, and recommendations for data screening are made. Temperature precision is 1 K or better from 316 hPa to 3.16 hPa, degrading to ∼3 K at 0.001 hPa. The vertical resolution is 3 km at 31.6 hPa, degrading to 6 km at 316 hPa and to ∼13 km at 0.001 hPa. Comparisons with analyses (Goddard Earth Observing System version 5.0.1 (GEOS-5), European Centre for Medium-range Weather Forecasts (ECMWF), Met Office (MetO)) and other observations (CHAllenging Minisatellite Payload (CHAMP), Atmospheric Infrared Sounder/Advanced Microwave Sounder Unit (AIRS/AMSU), Sounding of the Atmosphere using Broadband Radiometry (SABER), Halogen Occultation Experiment (HALOE), Atmospheric Chemistry Experiment (ACE), radiosondes) indicate that MLS temperature has persistent, pressure-dependent biases which are between −2.5 K and +1 K between 316 hPa and 10 hPa. The 100-hPa MLS v2.2 GPH surface has a bias of ∼150 m relative to the GEOS-5 values. These biases are compared to modeled systematic uncertainties. GPH biases relative to correlative measurements generally increase with height owing to an overall cold bias in MLS temperature relative to correlative temperature measurements in the upper stratosphere and mesosphere
Composition of the pericellular matrix modulates the deformation behaviour of chondrocytes in articular cartilage under static loading
The aim was to assess the role of the composition changes in the pericellular matrix (PCM) for the chondrocyte deformation. For that, a three-dimensional finite element model with depth-dependent collagen density, fluid fraction, fixed charge density and collagen architecture, including parallel planes representing the split-lines, was created to model the extracellular matrix (ECM). The PCM was constructed similarly as the ECM, but the collagen fibrils were oriented parallel to the chondrocyte surfaces. The chondrocytes were modelled as poroelastic with swelling properties. Deformation behaviour of the cells was studied under 15% static compression. Due to the depth-dependent structure and composition of cartilage, axial cell strains were highly depth-dependent. An increase in the collagen content and fluid fraction in the PCMs increased the lateral cell strains, while an increase in the fixed charge density induced an inverse behaviour. Axial cell strains were only slightly affected by the changes in PCM composition. We conclude that the PCM composition plays a significant role in the deformation behaviour of chondrocytes, possibly modulating cartilage development, adaptation and degeneration. The development of cartilage repair materials could benefit from this information
- …