113 research outputs found

    White matter integrity as a predictor of response to treatment in first episode psychosis

    Get PDF
    The integrity of brain white matter connections is central to a patient's ability to respond to pharmacological interventions. This study tested this hypothesis using a specific measure of white matter integrity, and examining its relationship to treatment response using a prospective design in patients within their first episode of psychosis. Diffusion tensor imaging data were acquired in 63 patients with first episode psychosis and 52 healthy control subjects (baseline). Response was assessed after 12 weeks and patients were classified as responders or non-responders according to treatment outcome. At this second time-point, they also underwent a second diffusion tensor imaging scan. Tract-based spatial statistics were used to assess fractional anisotropy as a marker of white matter integrity. At baseline, non-responders showed lower fractional anisotropy than both responders and healthy control subjects (P < 0.05; family-wise error-corrected), mainly in the uncinate, cingulum and corpus callosum, whereas responders were indistinguishable from healthy control subjects. After 12 weeks, there was an increase in fractional anisotropy in both responders and non-responders, positively correlated with antipsychotic exposure. This represents one of the largest, controlled investigations of white matter integrity and response to antipsychotic treatment early in psychosis. These data, together with earlier findings on cortical grey matter, suggest that grey and white matter integrity at the start of treatment is an important moderator of response to antipsychotics. These findings can inform patient stratification to anticipate care needs, and raise the possibility that antipsychotics may restore white matter integrity as part of the therapeutic response

    The Relationship between Regular Sports Participation and Vigilance in Male and Female Adolescents

    Get PDF
    The present study investigated the relationship between regular sport participation (soccer) and vigilance performance. Two groups of male and female adolescents differentiated in terms of their sport participation (athletes, n = 39, and non-athletes, n = 36) took part in the study. In one session, participants performed the Leger Multi-stage fitness test to estimate their aerobic fitness level. In the other session, participants completed the Psychomotor Vigilance Task (PVT) to evaluate their vigilance performance. Perceived arousal prior to the task and motivation toward the task were also measured in the PVT session. The results revealed that athletes had better cardiovascular fitness and showed better performance in the PVT. However, correlation analyses did not show any significant relationship between cardiovascular fitness and performance in the PVT. Athletes showed larger scores in motivation and perceived arousal measures with respect to non-athletes, although, once again, these variables were not correlated with PVT performance. Gender differences were observed only in the Leger test, with males showing greater fitness level than females. The major outcome of this research points to a positive relationship between regular sport participation and vigilance during adolescence. This relationship did not seem to be influenced by gender, perceived arousal, motivation toward the task or cardiovascular fitness. We discuss our results in terms of the different hypotheses put forward in the literature to explain the relationship between physical activity and cognitive functioning.This research was supported by a Spanish Ministerio de Educación y Cultura (https://sede. educacion.gob.es) predoctoral grant (FPU13-05605) to the first author, and project research grants: Junta de Andalucia Proyecto de Excelencia SEJ-6414 (http://www.juntadeandalucia.es) and Ministerio de Economía y Competitividad PSI2013-46385 (http://www.mineco.gob.es) to DS and FH

    Assembly of Protein Building Blocks Using a Short Synthetic Peptide

    Get PDF
    Combining proteins or their defined domains offers new enhanced functions. Conventionally, two proteins are either fused into a single polypeptide chain by recombinant means or chemically cross-linked. However, these strategies can have drawbacks such as poor expression (recombinant fusions) or aggregation and inactivation (chemical cross-linking), especially in the case of large multifunctional proteins. We developed a new linking method which allows site-oriented, noncovalent, yet irreversible stapling of modified proteins at neutral pH and ambient temperature. This method is based on two distinct polypeptide linkers which self-assemble in the presence of a specific peptide staple allowing on-demand and irreversible combination of protein domains. Here we show that linkers can either be expressed or be chemically conjugated to proteins of interest, depending on the source of the proteins. We also show that the peptide staple can be shortened to 24 amino acids still permitting an irreversible combination of functional proteins. The versatility of this modular technique is demonstrated by stapling a variety of proteins either in solution or to surfaces

    Neurocognitive and Neuroimaging Predictors of Clinical Outcome in Bipolar Disorder

    Get PDF
    Historically, bipolar disorder has been conceptualized as a disease involving episodic rather than chronic dysfunction. However, increasing evidence indicates that bipolar disorder is associated with substantial inter-episode psychosocial and vocational impairment. Here we review the contributions of neurocognitive deficits and structural and functional neuroanatomic alterations to the observed functional impairments. In particular, compelling evidence now suggests that neurocognitive impairments, particularly in the areas of attention, processing speed, and memory, are associated with functional outcome. Although investigation of the neural correlates of functional disability in bipolar disorder is only in its nascent stages, preliminary evidence suggests that white matter abnormalities may be predictive of poor outcome. A better understanding of the relationship between neurocognitive and neuroimaging assays and functional outcome has the potential to improve current treatment options and provide targets for new treatment strategies in bipolar disorder

    Relationship between Exercise Capacity and Brain Size in Mammals

    Get PDF
    A great deal of experimental research supports strong associations between exercise, cognition, neurogenesis and neuroprotection in mammals. Much of this work has focused on neurogenesis in individual subjects in a limited number of species. However, no study to date has examined the relationship between exercise and neurobiology across a wide range of mammalian taxa. It is possible that exercise and neurobiology are related across evolutionary time. To test this hypothesis, this study examines the association between exercise and brain size across a wide range of mammals.Controlling for associations with body size, we examined the correlation between brain size and a proxy for exercise frequency and capacity, maximum metabolic rate (MMR; ml O(2) min(-1)). We collected brain sizes and MMRs from the literature and calculated residuals from the least-squares regression line describing the relationship between body mass and each variable of interest. We then analyzed the correlation between residual brain size and residual MMR both before and after controlling for phylogeny using phylogenetic independent contrasts. We found a significant positive correlation between maximum metabolic rate and brain size across a wide range of taxa.These results suggest a novel hypothesis that links brain size to the evolution of locomotor behaviors in a wide variety of mammalian species. In the end, we suggest that some portion of brain size in nonhuman mammals may have evolved in conjunction with increases in exercise capacity rather than solely in response to selection related to cognitive abilities

    The effects of an extensive exercise programme on the progression of Mild Cognitive Impairment (MCI): study protocol for a randomised controlled trial

    Get PDF
    Background Exercise interventions to prevent dementia and delay cognitive decline have gained considerable attention in recent years. Human and animal studies have demonstrated that regular physical activity targets brain function by increasing cognitive reserve. There is also evidence of structural changes caused by exercise in preventing or delaying the genesis of neurodegeneration. Although initial studies indicate enhanced cognitive performance in patients with mild cognitive impairment (MCI) following an exercise intervention, little is known about the effect of an extensive, controlled and regular exercise regimen on the neuropathology of patients with MCI. This study aims to determine the effects of an extensive exercise programme on the progression of MCI. Methods/design This randomised controlled clinical intervention study will take place across three European sites. Seventy-five previously sedentary patients with a clinical diagnosis of MCI will be recruited at each site. Participants will be randomised to one of three groups. One group will receive a standardised 1-year extensive aerobic exercise intervention (3 units of 45 min/week). The second group will complete stretching and toning (non-aerobic) exercise (3 units of 45 min/week) and the third group will act as the control group. Change in all outcomes will be measured at baseline (T0), after six months (T1) and after 12 months (T2). The primary outcome, cognitive performance, will be determined by a neuropsychological test battery (CogState battery, Trail Making Test and Verbal fluency). Secondary outcomes include Montreal Cognitive Assessment (MoCA), cardiovascular fitness, physical activity, structural changes of the brain, quality of life measures and measures of frailty. Furthermore, outcome variables will be related to genetic variations on genes related to neurogenesis and epigenetic changes in these genes caused by the exercise intervention programme. Discussion The results will add new insights into the prevailing notion that exercise may slow the rate of cognitive decline in MCI

    Independent and combined influence of healthy lifestyle factors on academic performance in adolescents: DADOS Study

    Get PDF
    BACKGROUND. Few studies have analyzed the combined effect of lifestyle factors on academic performance (AP) in adolescents. The aim of this study was to analyze the independent and combined effects of weight status, screen time, sleep quality, daily meal frequency, cardiorespiratory fitness and physical activity (PA) on AP in adolescents. METHODS. A total of 262 adolescents (13.9±0.3 years) from the DADOS study were included in the analysis. Weight status was assessed through body mass index (kg/m 2 ). Participants completed questionnaires to evaluate screen time, sleep quality and daily meal frequency. Cardiorespiratory fitness was assessed by the 20-m shuttle run test. PA was evaluated by a wrist-worn GENEActiv accelerometer. AP was assessed through the final academic grades and a validated questionnaire. RESULTS. Non-overweight status, low screen time, good sleep quality and proper meal frequency showed independent, positive influence on AP. Moreover, adolescents achieving at least 3 healthy lifestyles were more likely to be in the high-performance group for academic grades than those achieving ≤ 1 (math OR: 3.02-9.51, language OR: 3.51-6.76 and grade point average OR: 4.22-9.36). CONCLUSIONS. Although individual healthy lifestyles are independently and positively associated with AP, the cumulative effect of multiple healthy lifestyles have a stronger impact

    The influence of polygenic risk for bipolar disorder on neural activation assessed using fMRI

    Get PDF
    Genome-wide association studies (GWAS) have demonstrated a significant polygenic contribution to bipolar disorder (BD) where disease risk is determined by the summation of many alleles of small individual magnitude. Modelling polygenic risk scores may be a powerful way of identifying disrupted brain regions whose genetic architecture is related to that of BD. We determined the extent to which common genetic variation underlying risk to BD affected neural activation during an executive processing/language task in individuals at familial risk of BD and healthy controls. Polygenic risk scores were calculated for each individual based on GWAS data from the Psychiatric GWAS Consortium Bipolar Disorder Working Group (PGC-BD) of over 16 000 subjects. The familial group had a significantly higher polygene score than the control group (P=0.04). There were no significant group by polygene interaction effects in terms of association with brain activation. However, we did find that an increasing polygenic risk allele load for BD was associated with increased activation in limbic regions previously implicated in BD, including the anterior cingulate cortex and amygdala, across both groups. The findings suggest that this novel polygenic approach to examine brain-imaging data may be a useful means of identifying genetically mediated traits mechanistically linked to the aetiology of BD

    Comprehensive in vivo Mapping of the Human Basal Ganglia and Thalamic Connectome in Individuals Using 7T MRI

    Get PDF
    Basal ganglia circuits are affected in neurological disorders such as Parkinson's disease (PD), essential tremor, dystonia and Tourette syndrome. Understanding the structural and functional connectivity of these circuits is critical for elucidating the mechanisms of the movement and neuropsychiatric disorders, and is vital for developing new therapeutic strategies such as deep brain stimulation (DBS). Knowledge about the connectivity of the human basal ganglia and thalamus has rapidly evolved over recent years through non-invasive imaging techniques, but has remained incomplete because of insufficient resolution and sensitivity of these techniques. Here, we present an imaging and computational protocol designed to generate a comprehensive in vivo and subject-specific, three-dimensional model of the structure and connections of the human basal ganglia. High-resolution structural and functional magnetic resonance images were acquired with a 7-Tesla magnet. Capitalizing on the enhanced signal-to-noise ratio (SNR) and enriched contrast obtained at high-field MRI, detailed structural and connectivity representations of the human basal ganglia and thalamus were achieved. This unique combination of multiple imaging modalities enabled the in-vivo visualization of the individual human basal ganglia and thalamic nuclei, the reconstruction of seven white-matter pathways and their connectivity probability that, to date, have only been reported in animal studies, histologically, or group-averaged MRI population studies. Also described are subject-specific parcellations of the basal ganglia and thalamus into sub-territories based on their distinct connectivity patterns. These anatomical connectivity findings are supported by functional connectivity data derived from resting-state functional MRI (R-fMRI). This work demonstrates new capabilities for studying basal ganglia circuitry, and opens new avenues of investigation into the movement and neuropsychiatric disorders, in individual human subjects
    corecore