70 research outputs found

    Étude des algorithmes de traitement de signal requis pour un système de communication MIMO

    Get PDF
    De nos jours, les communications sans fil sont en plein essor. La demande est sans cesse grandissante pour une transmission plus rapide, plus fiable, et pour plus de fonctionnalité, tout en respectant des contraintes telles que le coût ou les limitations des bandes passantes. Une nouvelle technique de transmission a été mise en évidence, cette approche a révolutionné les transmissions sans fils. Elle permet de transmettre selon une architecture basée sur plusieurs antennes, appelée MIMO (Multiple Input Multiple Output). Dans ce cas de figure, la théorie de l'information (1948) établie par Shannon pour un canal de transmission a été généralisée à plusieurs canaux et, par conséquent, la limite physique imposée par le canal de transmission se voit modifiée. Grâce à la technique MIMO, la transmission pourra se faire avec moins de contraintes du canal et atteindre des efficacités spectrales et des débits jamais encore atteints. Ce mémoire démontre qu'il est possible de détecter le signal qui est émis avec la technique MIMO en utilisant une architecture particulière de l'égaliseur à retour d'état appelé MIMO-DFE qui est à base de matrices de coefficients adaptatifs. Les simulations effectuées confirment la fonctionnalité de l'approche MIMO et appuient les affirmations théoriques de cette nouvelle technique de transmission. Cependant, des modifications doivent être ajoutées pour améliorer les performances du système

    Factors necessary to produce basoapical polarity in human glandular epithelium formed in conventional and high-throughput three-dimensional culture: example of the breast epithelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Basoapical polarity in epithelia is critical for proper tissue function, and control of proliferation and survival. Cell culture models that recapitulate epithelial tissue architecture are invaluable to unravel developmental and disease mechanisms. Although factors important for the establishment of basal polarity have been identified, requirements for the formation of apical polarity in three-dimensional tissue structures have not been thoroughly investigated.</p> <p>Results</p> <p>We demonstrate that the human mammary epithelial cell line-3522 S1, provides a resilient model for studying the formation of basoapical polarity in glandular structures. Testing three-dimensional culture systems that differ in composition and origin of substrata reveals that apical polarity is more sensitive to culture conditions than basal polarity. Using a new high-throughput culture method that produces basoapical polarity in glandular structures without a gel coat, we show that basal polarity-mediated signaling and collagen IV are both necessary for the development of apical polarity.</p> <p>Conclusion</p> <p>These results provide new insights into the role of the basement membrane, and especially collagen IV, in the development of the apical pole, a critical element of the architecture of glandular epithelia. Also, the high-throughput culture method developed in this study should open new avenues for high-content screening of agents that act on mammary tissue homeostasis and thus, on architectural changes involved in cancer development.</p

    Genomic Signatures of Cooperation and Conflict in the Social Amoeba

    Get PDF
    Molecular evolution analyses reveal the history of social conflict Genes that mediate social conflict show signatures of frequency-dependent selection Balanced polymorphisms suggest that cheating may be stable and endemic Cooperative systems are susceptible to invasion by selfish individuals that profit from receiving the social benefits but fail to contribute. These so-called cheaters can have a fitness advantage in the laboratory, but it is unclear whether cheating provides an important selective advantage in nature. We used a population genomic approach to examine the history of genes involved in cheating behaviors in the social amoeba Dictyostelium discoideum, testing whether these genes experience rapid evolutionary change as a result of conflict over spore-stalk fate. Candidate genes and surrounding regions showed elevated polymorphism, unusual patterns of linkage disequilibrium, and lower levels of population differentiation, but they did not show greater between-species divergence. The signatures were most consistent with frequency-dependent selection acting to maintain multiple alleles, suggesting that conflict may lead to stalemate rather than an escalating arms race. Our results reveal the evolutionary dynamics of cooperation and cheating and underscore how sequence-based approaches can be used to elucidate the history of conflicts that are difficult to observe directly

    The Drosophila melanogaster Genetic Reference Panel

    Get PDF
    A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype-phenotype map were based on incomplete genotypic information. Here, we describe the Drosophila melanogaster Genetic Reference Panel (DGRP), a community resource for analysis of population genomics and quantitative traits. The DGRP consists of fully sequenced inbred lines derived from a natural population. Population genomic analyses reveal reduced polymorphism in centromeric autosomal regions and the X chromosome, evidence for positive and negative selection, and rapid evolution of the X chromosome. Many variants in novel genes, most at low frequency, are associated with quantitative traits and explain a large fraction of the phenotypic variance. The DGRP facilitates genotype-phenotype mapping using the power of Drosophila genetics

    Review: Astrocytes in Alzheimer's disease and other age-associated dementias; a supporting player with a central role.

    Get PDF
    Astrocytes have essential roles in the central nervous system and are also implicated in the pathogenesis of neurodegenerative disease. Forming non-overlapping domains, astrocytes are highly complex cells. Immunohistochemistry to a variety of proteins can be used to study astrocytes in tissue, labelling different cellular components and subpopulations, including GFAP, ALDH1L1, CD44, NDRG2 and amino acid transporters, but none of these label the entire astrocyte population. Increasing heterogeneity is recognised in the astrocyte population, a complexity that is relevant both to their normal function and pathogenic roles. They are involved in neuronal support, as active components of the tripartite synapse and in cell interactions within the neurovascular unit, where they are essential for blood brain barrier maintenance and neurovascular coupling. Astrocytes change with age, and their responses may modulate the cellular effects of neurodegenerative pathologies, which alone do not explain all of the variance in statistical models of neurodegenerative dementias. Astrocytes respond to both the neurofibrillary tangles and plaques of Alzheimer's disease, to hyperphosphorylated tau and Aβ, eliciting an effect which may be neuroprotective or deleterious. Astrocyte hypertrophy, in the form of gliosis, occurs, but also astrocyte injury and atrophy. Loss of normal astrocyte functions may contribute to reduced support for neurons and dysfunction of the neurovascular unit. Understanding how astrocytes contribute to dementia requires an understanding of the underlying heterogeneity of astrocyte populations, and the complexity of their responses to pathology. Enhancing the supportive and neuroprotective components of the astrocyte response has potential translational applications in therapeutic approaches to dementia. This article is protected by copyright. All rights reserved

    Nanostructural Diversity of Synapses in the Mammalian Spinal Cord

    Get PDF
    This work for funded by the Biotechnology and Biological Sciences Research Council (BBSRC; BB/M021793/1), RS MacDonald Charitable Trust, Motor Neurone Disease (MND) Association UK (Miles/Apr18/863-791), the Engineering and Physical Sciences Research Council (EPSRC; EP/P030017/1), Welcome Trust (202932/Z/16/Z), European Research Council (ERC; 695568) and the Simons Initiative for the Developing Brain.Functionally distinct synapses exhibit diverse and complex organisation at molecular and nanoscale levels. Synaptic diversity may be dependent on developmental stage, anatomical locus and the neural circuit within which synapses reside. Furthermore, astrocytes, which align with pre and post-synaptic structures to form “tripartite synapses”, can modulate neural circuits and impact on synaptic organisation. In this study, we aimed to determine which factors impact the diversity of excitatory synapses throughout the lumbar spinal cord. We used PSD95-eGFP mice, to visualise excitatory postsynaptic densities (PSDs) using high-resolution and super-resolution microscopy. We reveal a detailed and quantitative map of the features of excitatory synapses in the lumbar spinal cord, detailing synaptic diversity that is dependent on developmental stage, anatomical region and whether associated with VGLUT1 or VGLUT2 terminals. We report that PSDs are nanostructurally distinct between spinal laminae and across age groups. PSDs receiving VGLUT1 inputs also show enhanced nanostructural complexity compared with those receiving VGLUT2 inputs, suggesting pathway-specific diversity. Finally, we show that PSDs exhibit greater nanostructural complexity when part of tripartite synapses, and we provide evidence that astrocytic activation enhances PSD95 expression. Taken together, these results provide novel insights into the regulation and diversification of synapses across functionally distinct spinal regions and advance our general understanding of the ‘rules’ governing synaptic nanostructural organisation.Publisher PDFPeer reviewe

    Daam2-PIP5K Is a Regulatory Pathway for Wnt Signaling and Therapeutic Target for Remyelination in the CNS

    No full text
    Wnt signaling plays an essential role in developmental and regenerative myelination of the CNS; however, contributions of proximal regulators of the Wnt receptor complex to these processes remain undefined. To identify components of the Wnt pathway that regulate these processes, we applied a multifaceted discovery platform and found that Daam2-PIP5K comprise a novel pathway regulating Wnt signaling and myelination. Using dorsal patterning of the chick spinal cord we found that Daam2 promotes Wnt signaling and receptor complex formation through PIP5K-PIP2. Analysis of Daam2 function in oligodendrocytes (OLs) revealed that it suppresses OL differentiation during development, after white matter injury (WMI), and is expressed in human white matter lesions. These findings suggest a pharmacological strategy to inhibit Daam2-PIP5K function, application of which stimulates remyelination after WMI. Put together, our studies integrate information from multiple systems to identify a novel regulatory pathway for Wnt signaling and potential therapeutic target for WMI
    corecore