23 research outputs found

    Octupole states in 207TI studied through β decay

    Get PDF
    The β decay of 207Hg into the single-proton-hole nucleus 207Tl has been studied through γ -ray spectroscopy at the ISOLDE Decay Station (IDS) with the aim of identifying states resulting from coupling of the πs −1 1/2, πd−1 3/2, and πh−1 11/2 shell model orbitals to the collective octupole vibration. Twenty-two states were observed lying between 2.6 and 4.0 MeV, eleven of which were observed for the first time, and 78 new transitions were placed. Two octupole states (s1/2-coupled) are identified and three more states (d3/2-coupled) are tentatively assigned using spin-parity inferences, while further h11/2-coupled states may also have been observed for the first time. Comparisons are made with state-of-the-art large-scale shell model calculations and previous observations made in this region, and systematic underestimation of the energy of the octupole vibrational states is noted. We suggest that in order to resolve the difference in predicted energies for collective and noncollective t = 1 states (t is the number of nucleons breaking the 208Pb core), the effect of t = 2 mixing may be reduced for octupole-coupled states. The inclusion of mixing with t = 0, 2, 3 excitations is necessary to replicate all t = 1 state energies accurately.The research leading to these results has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 654002. Support from the European Union Seventh Framework through ENSAR Contract No. 262010, the Science and Technology Facilities Council (UK), the MINECO Projects No. FPA2015-64969-P and No. FPA2017-87568-P (Spain), FWO Vlaanderen (Belgium), GOA/2015/010 (BOF KU Leuven), the Excellence of Science Programme (EOS-FWO), the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (BriX network P7/12), the German BMBF under Contract No. 05P18PKCIA + “Verbundprojekt 05P2018,” the Polish National Science Centre under Contracts No. UMO-2015/18/M/ST2/00523 and No. UMO-2019/33/N/ST2/03023, the National Science Foundation (US) Grant No. PHY-1811855 and the Romanian IFA project CERN-RO/ISOLDE is acknowledged. P.H.R. and S.M.J. acknowledge support from the UK Department for Business, Energy and Industrial Strategy via the National Measurement Office

    Beta-delayed neutron spectroscopy of 133^{133}In

    Full text link
    The decay properties of 133^{133}In were studied in detail at the ISOLDE Decay Station (IDS). The implementation of the Resonance Ionization Laser Ion Source (RILIS) allowed separate measurements of its 9/2+9/2^+ ground state (133g^{133g}In) and 1/21/2^- isomer (133m^{133m}In). With the use of β\beta-delayed neutron and γ\gamma spectroscopy, the decay strengths above the neutron separation energy were quantified in this neutron-rich nucleus for the first time. The allowed Gamow-Teller transition 9/2+7/2+9/2^+\rightarrow7/2^+ was located at 5.92 MeV in the 133g^{133g}In decay with a logft = 4.7(1). In addition, several neutron-unbound states were populated at lower excitation energies by the First-Forbidden decays of 133g,m^{133g,m}In. We assigned spins and parities to those neutron-unbound states based on the β\beta-decay selection rules, the logft values, and systematics

    Octupole states in Tl-207 studied through beta decay

    Get PDF
    The beta decay of Hg-207 into the single-proton-hole nucleus Tl-207 has been studied through gamma-ray spectroscopy at the ISOLDE Decay Station (IDS) with the aim of identifying states resulting from coupling of the pi s(1/2)(-1), pi d(3/2)(-1) and pi h(11/2)(-1) shell model orbitals to the collective octupole vibration. Twenty-two states were observed lying between 2.6 and 4.0 MeV, eleven of which were observed for the first time, and 78 new transitions were placed. Two octupole states (s(3/2)-coupled) are identified and three more states (d(3/2)-coupled) are tentatively assigned using spin-parity inferences, while further h(11/2)-coupled states may also have been observed for the first time. Comparisons are made with state-of-the-art large-scale shell model calculations and previous observations made in this region, and systematic underestimation of the energy of the octupole vibrational states is noted. We suggest that in order to resolve the difference in predicted energies for collective and noncollective t = 1 states (t is the number of nucleons breaking the Pb-208 core), the effect of t = 2 mixing may be reduced for octupole-coupled states. The inclusion of mixing with t = 0, 2, 3 excitations is necessary to replicate all t = 1 state energies accurately.Peer reviewe

    Competition between Allowed and First-Forbidden beta Decay : The Case of Hg-208 -> Tl-2(0)8

    Get PDF
    The beta decay of Hg-208 into the one-proton hole, one neutron-particle Tl-208(81)127 nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N > 126, Z 0(-)beta decay where the daughter state is core excited is unique, and can provide information on mesonic corrections of effective operators.Peer reviewe

    Study of the deformation-driving vd5/2 orbital in 6728Ni39 using one-neutron transfer reactions

    Get PDF
    Abstract The ν g 9 / 2 , d 5 / 2 , s 1 / 2 orbitals are assumed to be responsible for the swift onset of collectivity observed in the region below 68Ni. Especially the single-particle energies and strengths of these orbitals are of importance. We studied such properties in the nearby 67Ni nucleus, by performing a ( d , p ) -experiment in inverse kinematics employing a post-accelerated radioactive ion beam (RIB) at the REX-ISOLDE facility. The experiment was performed at an energy of 2.95 MeV/u using a combination of the T-REX particle detectors, the Miniball γ-detection array and a newly-developed delayed-correlation technique as to investigate μs-isomers. Angular distributions of the ground state and multiple excited states in 67Ni were obtained and compared with DWBA cross-section calculations, leading to the identification of positive-parity states with substantial ν g 9 / 2 (1007 keV) and ν d 5 / 2 (2207 keV and 3277 keV) single-particle strengths up to an excitation energy of 5.8 MeV. 50% of the ν d 5 / 2 single-particle strength relative to the ν g 9 / 2 -orbital is concentrated in and shared between the first two observed 5 / 2 + levels. A comparison with extended Shell Model calculations and equivalent (3He, d) studies in the region around 9040Zr50 highlights similarities for the strength of the negative-parity pf and positive-parity g 9 / 2 state, but differences are observed for the d 5 / 2 single-particle strength

    208Po populated through EC/β+decay

    Get PDF
    The structure of 208Po resulting from the EC/β + decay of 208At was studied at CERN’s ISOLDE Decay Station (IDS). The high statistics afforded by the high yield of 208At and the high efficiency HPGe clusters at the IDS allowed for greater insight into lower intensity transitions and thus significant expansion of the 208Po level scheme. Furthermore, investigation into the isomeric state yielded a new half life 377(9) ns in addition to uncovering new transitions populating the state.The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 654002. As well as the Science and Technology Facilities Council (UK) through grants ST/P005314/1, ST/L005743/1, ST/J000051/1, ST/L005670/1, and ST/P004598/1 and (PHR) by the UK Department of Business, Energy and Industrial Strategy (BEIS) via the National Measurement System. Further funding was provided by the German BMBF under contract 05P18PKCIA and ”Verbundprojekt 05P2018” as well as the Spanish MINECO grant FPA2015-65035-P.Peer reviewe

    Competition between allowed and first-forbidden β decays of at 208 and expansion of the Po 208 level scheme

    Get PDF
    The structure of Po208 populated through the EC/β+ decay of At208 is investigated using γ-ray spectroscopy at the ISOLDE Decay Station. The presented level scheme contains 27 new excited states and 43 new transitions, as well as a further 50 previously observed γ rays which have been (re)assigned a position. The level scheme is compared to shell model calculations. Through this analysis approximately half of the β-decay strength of At208 is found to proceed via allowed decay and half via first-forbidden decay. The first-forbidden transitions predominantly populate core excited states at high excitation energies, which is qualitatively understood using shell model considerations. This mass region provides an excellent testing ground for the competition between allowed and first-forbidden β-decay calculations, important for the detailed understanding of the nucleosynthesis of heavy elements

    Investigation of the Δn = 0 selection rule in Gamow-Teller transitions : The β-decay of 207 Hg

    Get PDF
    Gamow-Teller β decay is forbidden if the number of nodes in the radial wave functions of the initial and final states is different. This Δn=0 requirement plays a major role in the β decay of heavy neutron-rich nuclei, affecting the nucleosynthesis through the increased half-lives of nuclei on the astrophysical r-process pathway below both Z=50 (for N>82) and Z=82 (for N>126). The level of forbiddenness of the Δn=1ν1g 9/2 →π0g 7/2 transition has been investigated from the β − decay of the ground state of 207 Hg into the single-proton-hole nucleus 207 Tl in an experiment at the ISOLDE Decay Station. From statistical observational limits on possible γ-ray transitions depopulating the π0g 7/2 −1 state in 207 Tl, an upper limit of 3.9×10 −3 % was obtained for the probability of this decay, corresponding to log⁡ft>8.8 within a 95% confidence limit. This is the most stringent test of the Δn=0 selection rule to date

    Experimental study of the Ni-66(d, p) Ni-67 one-neutron transfer reaction

    No full text
    International audienceThe quasi-SU(3) sequence of the positive parity nu g(9/2), d(5/2), s(1/2) orbitals above the N = 40 shell gap are assumed to induce strong quadrupole collectivity in the neutron-rich Fe (Z = 26) and Cr (Z = 24) isotopes below the nickel region. In this paper the position and strength of these single-particle orbitals are characterized in the neighborhood of Ni-68 (Z = 28, N = 40) through the Ni-66(d, p)Ni-67 one-neutron transfer reaction at 2.95 MeV/nucleon in inverse kinematics, performed at the REX-ISOLDE facility in CERN. A combination of the Miniball gamma-array and T-REX particle-detection setup was used and a delayed coincidence technique was employed to investigate the 13.3-mu s isomer at 1007 keV in Ni-67. Excited states up to an excitation energy of 5.8MeV have been populated. Feeding of the nu g(9/2) (1007 keV) and nu d(5/2) (2207 keV and 3277 keV) positive-parity neutron states and negative parity (nu pf) states have been observed at low excitation energy. The extracted relative spectroscopic factors, based on a distorted-wave Born approximation analysis, show that the d(5/2) single-particle strength is mostly split over these two excited states. The results are also compared to the distribution of the proton single-particle strength in the 90Zr region (Z = 40, N = 50)
    corecore