132 research outputs found

    Hybrid treatment of small droplets in atomized jet

    Get PDF
    International audienceL'atomisation de combustible a un impact direct sur l'émission de polluants dans l'atmosphère. Face au besoin de caractériser l'atomisation primaire, l'étude numérique de l'intéraction liquide-gaz croît dans le but de maîtriser la création de particules polluantes et de la réduire. Elle est effectuée sur l'ensemble du spray, de son injection dans la chambre de combustion jusqu'à l'évaporation des gouttes créées suite au secondary breakup. Notre but est d'augmenter la précision du transport des gouttes au sein des jets atomisés, typiquement, une goutte est 100 fois plus petite que le diamètre d'injection. Cette différence d'échelle rend la définition de l'interface liquide-gaz complexe et crééer des zones sous résolues. Pour résoudre ce probleme d'échelle, un coupling entre un suivi Eulérien et un suivi Lagrangian a été proposé, voir Hermann, [1]. Cette communication se concentre sur les critères de transformation d'une goutte eulérienne en particule lagrangienne et les modifications physiques et numériques entourant cette transformation. Cette communication se concentre sur l'implémentation d'une méthode de suivi de particule polydisperse basée sur des critères géometriques. Ils sont finalement appliqués sur l'étude d'un jet atomisé. Abstract : Atomization of liquid fuel has a direct impact on the production of pollutant emission in engineering propulsion devices. Due to the multiple challenges in experimental investigations, motivation for numerical study is increasing on liquid/gas interaction from injection till dispersed spray zone. Our purpose is to increase the accuracy of the treatment of droplets in atomized jet, which are typically 100 times smaller than the injection size. As the size of the droplets reduces with the primary breakup of liquid fuel, it is increasingly challenging to track the interface of the droplets accurately. To solve this multis-cale issue, a coupled tracking Eulerian-Lagrangian Method is proposed, see Hermann, [1]. This communication focuses on the criteria of transformation of this coupling from interface captured droplets to Lagrangian particles and numerical/physical reconstruction during this process. From the literature, interaction criteria of transformation are all geometric, implementation of physical parameter is made in this communication. Those criteria are finally applied on a liquid jet atomization

    From droplets to particles: Transformation criteria

    Get PDF
    International audienceAtomization of liquid fuel has a direct impact on the production of pollutant emission in engineering propulsion devices. Due to the multiple challenges in experimental investigations, motivation for numerical study is increasing on liquid-gas interaction from injection till dispersed spray zone. Our purpose is to increase the accuracy of the treatment of droplets in atomized jet, which are typically 100 times smaller than the characteristic injection length size. As the characteristic length reduces downstream to the jet, it is increasingly challenging to track the interface of the droplets accurately. To solve this multiscale issue, a coupled tracking Eulerian-Lagrangian Method exists [1]. It consists in transforming the small droplets to Lagrangian droplets that are transported with drag models. In addition to the size transformation criteria, one can consider geometric parameters to determine if a droplet has to be transformed. Indeed, the geometric criteria are there for two reasons. The first one is the case where the droplets can break if there are not spherical. The second one is about the drag models that are based on the assumption that the droplet is spherical. In this paper we make a review of the geometric criteria used in the literature. New geometric criteria are also proposed. Those criteria are validated and then discussed in academic cases and a 3D airblast atomizer simulation. Following the analysis of the results the authors advise the use of the deformation combined with surface criteria as the geometric transformation criteria. Introduction Atomization is a phenomenon encountered in many applications such as sprays in cosmetic engineering or aerospace engineering for jet propulsion [2]. In the combustion chamber, the total surface of the interface separating the two phases is a key parameter. Primary and secondary breakup have been extensively investigated in the literature. However, in order to fully describe the complete process, one has to capture droplets in dispersed zone 100 times smaller than jet diameter. Atomization is then a multiphase and a multiscale flow phenomenon which is still far from being understood. Due to this wide range of scale, the Direct Numerical Simulation (DNS) of such process requires robust and efficient codes. DNS is an important tool to analyse the experimental results and go further into the atomization understanding. In the past few years, numerical schemes of Interface Capturing Method (ICM) have been improved but faced numerical limitation. For instance, the treatment of the small droplets is the most challenging part when the entire process is treated in DNS. When dealing with unresolved structures we face different problems such as the dilution or the creation of numerical instabilities. To avoir them, a strategy is to remove small structures during the simulation, see Shinjo et al. [3]. But, those methods do not collect information on smallest droplets in atomization application. Introduction of Adaptive Mesh Refinement (AMR) in DNS is a first answer to this issue, it consists in refining unresolved area under numerical concept and focus on the interface between two phases instead of refining the entire domain. In dense spray, AMR tends to refine the entire zone and becomes as expensive as a full domain refinement. A solution is to transform the smallest droplets into point particles and remove AMR in this area. This strategy is called Eulerian-Lagrangian coupling [1], it assumes that small droplets will no longer break during the simulation and that the Lagrangian models reproduce correctly the droplet transport. These physical assumptions are implemented to answer numerical issue and improve the computational cost. This Eulerian-Lagrangian coupling is based on transformation criteria that defines when an ICM structure has to be transformed into Lagrangian particle and when a Lagrangian particle has to be transformed back into ICM. The main purpose of the present communication is to provide a detailed analysis of the ICM to Lagrangian transformation criteria. The geometri

    How the central domain of dystrophin acts to bridge F-actin to sarcolemmal lipids

    Get PDF
    Dystrophin is a large intracellular protein that prevents sarcolemmal ruptures by providing a mechanical link between the intracellular actin cytoskeleton and the transmembrane dystroglycan complex. Dystrophin deficiency leads to the severe muscle wasting disease Duchenne Muscular Dystrophy and the milder allelic variant, Becker Muscular Dystrophy (DMD and BMD). Previous work has shown that concomitant interaction of the actin binding domain 2 (ABD2) comprising spectrin like repeats 11 to 15 (R11-15) of the central domain of dystrophin, with both actin and membrane lipids, can greatly increase membrane stiffness. Based on a combination of SAXS and SANS measurements, mass spectrometry analysis of cross-linked complexes and interactive low-resolution simulations, we explored in vitro the molecular properties of dystrophin that allow the formation of ABD2-F-actin and ABD2-membrane model complexes. In dystrophin we identified two subdomains interacting with F-actin, one located in R11 and a neighbouring region in R12 and another one in R15, while a single lipid binding domain was identified at the C-terminal end of R12. Relative orientations of the dystrophin central domain with F-actin and a membrane model were obtained from docking simulation under experimental constraints. SAXS-based models were then built for an extended central subdomain from R4 to R19, including ABD2. Overall results are compatible with a potential F-actin/dystrophin/membrane lipids ternary complex. Our description of this selected part of the dystrophin associated complex bridging muscle cell membrane and cytoskeleton opens the way to a better understanding of how cell muscle scaffolding is maintained through this essential protein

    Directed search over the life cycle

    Get PDF
    We develop a life-cycle model of the labor market in which different worker-firm matches have different quality and the assignment of the right workers to the right firms is time consuming because of search and learning frictions. The rate at which workers move between unemployment, employment and across different firms is endogenous because search is directed and, hence, workers can choose whether to seek low-wage jobs that are easy to find or high-wage jobs that are hard to find. We calibrate our theory using data on labor market transitions aggregated across workers of different ages. We validate our theory by showing that it predicts quite well the pattern of labor market transitions for workers of different ages. Finally, we use our theory to decompose the age profiles of transition rates, wages and productivity into the effects of age variation in work-life expectancy, human capital and match quality

    Artificial intelligence in biological activity prediction

    Get PDF
    Artificial intelligence has become an indispensable resource in chemoinformatics. Numerous machine learning algorithms for activity prediction recently emerged, becoming an indispensable approach to mine chemical information from large compound datasets. These approaches enable the automation of compound discovery to find biologically active molecules with important properties. Here, we present a review of some of the main machine learning studies in biological activity prediction of compounds, in particular for sweetness prediction. We discuss some of the most used compound featurization techniques and the major databases of chemical compounds relevant to these tasks.This study was supported by the European Commission through project SHIKIFACTORY100 - Modular cell factories for the production of 100 compounds from the shikimate pathway (Reference 814408), and by the Portuguese FCT under the scope of the strategic funding of UID/BIO/04469/2019 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020.info:eu-repo/semantics/publishedVersio

    Antifungal activity of amphotericin B conjugated to nanosized magnetite in the treatment of paracoccidioidomycosis

    Get PDF
    This study reports on in vitro and in vivo tests that sought to assess the antifungal activity of a newly developed magnetic carrier system comprising amphotericin B loaded onto the surface of pre-coated (with a double-layer of lauric acid) magnetite nanoparticles. The in vitro tests compared two drugs; i.e., this newly developed form and free amphotericin B. We found that this nanocomplex exhibited antifungal activity without cytotoxicity to human urinary cells and with low cytotoxicity to peritoneal macrophages. We also evaluated the efficacy of the nanocomplex in experimental paracoccidioidomycosis. BALB/c mice were intratracheally infected with Paracoccidioides brasiliensis and treated with the compound for 30 or 60 days beginning the day after infection. The newly developed amphotericin B coupled with magnetic nanoparticles was effective against experimental paracoccidioidomycosis, and it did not induce clinical, biochemical or histopathological alterations. The nanocomplex also did not induce genotoxic effects in bone marrow cells. Therefore, it is reasonable to believe that amphotericin B coupled to magnetic nanoparticles and stabilized with bilayer lauric acid is a promising nanotool for the treatment of the experimental paracoccidioidomycosis because it exhibited antifungal activity that was similar to that of free amphotericin B, did not induce adverse effects in therapeutic doses and allowed for a reduction in the number of applications

    A united statement of the global chiropractic research community against the pseudoscientific claim that chiropractic care boosts immunity.

    Get PDF
    BACKGROUND: In the midst of the coronavirus pandemic, the International Chiropractors Association (ICA) posted reports claiming that chiropractic care can impact the immune system. These claims clash with recommendations from the World Health Organization and World Federation of Chiropractic. We discuss the scientific validity of the claims made in these ICA reports. MAIN BODY: We reviewed the two reports posted by the ICA on their website on March 20 and March 28, 2020. We explored the method used to develop the claim that chiropractic adjustments impact the immune system and discuss the scientific merit of that claim. We provide a response to the ICA reports and explain why this claim lacks scientific credibility and is dangerous to the public. More than 150 researchers from 11 countries reviewed and endorsed our response. CONCLUSION: In their reports, the ICA provided no valid clinical scientific evidence that chiropractic care can impact the immune system. We call on regulatory authorities and professional leaders to take robust political and regulatory action against those claiming that chiropractic adjustments have a clinical impact on the immune system

    Effects of perceived cost, service quality, and customer satisfaction on health insurance service continuance

    Get PDF
    This paper aims to contribute to the universal discourse on financial services continuance behavior by examining the impact of service cost on customers\u27 service-quality perception and service continuance intention. It presents the results of an empirical study that has explored the impacts of service cost, service quality, and customer satisfaction on health insurance customers\u27 behavioral intention toward continuing or discontinuing with their service providers. Very few studies had examined the impact of service cost on service-quality perception. Our study attempts to fill that gap. A sample of 820 customers was surveyed, and 624 usable responses were analyzed with ANOVA, standard multiple regression, and logistic regression. Our findings indicate that, although highly satisfied health insurance customers will most likely retain their current service providers, customer dissatisfaction does not necessarily lead to discontinuance. Our results also provide some operational implications for health insurance managers, with strategies for reducing attrition and improving customer retention
    • …
    corecore