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Abstract. Artificial intelligence has become an indispensable resource
in chemoinformatics. Numerous machine learning algorithms for activ-
ity prediction recently emerged, becoming an indispensable approach
to mine chemical information from large compound datasets. These
approaches enable the automation of compound discovery to find bio-
logically active molecules with important properties. Here, we present a
review of some of the main machine learning studies in biological activ-
ity prediction of compounds, in particular for sweetness prediction. We
discuss some of the most used compound featurization techniques and
the major databases of chemical compounds relevant to these tasks.
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1 Introduction

For centuries, humans have been manually searching and documenting different
compounds, assessing their interaction with biological systems to find suitable
products that solve problems and enhance quality of life. Despite the broad
amount of data collected on compounds capable of curing illnesses, fighting
infections or satisfying our food sensory system, the search for compounds with
improved biological capabilities is still in high demand. With the modernization
of the pharmaceutical and food industries, there is a growing need for more sus-
tainable compounds, with improved biological activities. By taking advantage
of the enormous quantity of categorized data on compound biological activity
existent, and still being generated, new approaches using artificial intelligence
(AI) are continuously being developed. With datasets getting larger and more
detailed and algorithms increasing their scope and accuracy, new tools for pre-
dicting biological activity arise, accelerating the generation of new products.
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2 Artificial Intelligence in Biological Activity Prediction

Machine learning (ML) is a field of AI where systems learn from data, identify
patterns and make decisions without being explicitly programmed [1]. Although
ML algorithms were created in the 1950s [2], ML only started to thrive in the
1990s and is becoming the most popular sub-field of AI. ML techniques are
classified as supervised or unsupervised. In the former, given input-output pairs,
a function to map the input to the output is learned so the model can predict
future cases. In the latter, patterns are learned directly from unlabeled data. For
biological activity prediction, it is common to use supervised methods.

In linear regression (LR) and logistic regression (LgR), linear relationships
between independent and dependent variables are learned. LgR is used for lin-
ear classification when the dependent variable is categorical. Naive Bayess (NBs)
is a probabilistic classification algorithm based on the Bayes theorem and the
assumption of feature independence. Random forests (RFs) are ensembles of
decision trees (DTs), tree-like models of decision rules where each node repre-
sents a feature, each branch represents a decision and each leaf an outcome.
RFs apply bagging to generate distinct training sets and create different models,
and predictions are obtained by majority voting. The objective of support-vector
machines (SVMs) is to map the data into a high-dimensional space by identifying
a lower dimensional hyperplane that separates the data using nonlinear kernels.
K-nearest neighborss (KNNs) is an instance-based algorithm where data is clas-
sified by its similarity with its k-nearest neighbors. Partial least squares (PLS)
regression is mostly used to predict a set of dependent variables from a large set
of independent variables. PLS decomposes the original set of variables into a set
of components that explain the most covariance between the independent and
dependent variables, and uses these components to predict the outputs. Neural
networks (NNs) are biologically-inspired algorithms designed to automatically
recognize patterns from input labeled data in order to be able to predict the
output of unlabeled data according to similarities with the example inputs.

Due to high accuracy and cost-effectiveness, ML is extensively used in many
fields including chemoinformatics. Recent algorithmic advances, as well as the
development of databases for the storage of molecule structures and their prop-
erties, accelerated the pace at which the field has evolved. Researchers have used
combinations and different approaches of traditional ML, as well as complex deep
learning (DL) architectures. A common approach is the use of these models for
the optimization of quantitative structure-activity relationship (QSAR) models
to improve the biological activity prediction of multiple compounds.

Biological activity prediction of compounds is one of the main research areas
in chemoinformatics [3]. The application of AI for this type of task is of critical
importance for the identification of compounds with desired properties. The
objective is to select a subset of compounds from all the compounds under
consideration that have a higher probability of being bioactive when compared
to a random sample. One important aspect for the success of ML in property
prediction is the access to large datasets. Multiple large datasets from public-
domain repositories are available and suited for activity prediction; such is the
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Table 1. A selection of recent studies that use AI for biological activity prediction

ML methods Study description

SVMs, KNN, RFs,
NB, DNNs

Comparison of DL methods on a large-scale drug discovery dataset
and other ML and target prediction methods [10]

RF, KNN, NB,
DNN

Predicting kinase activities for around 200 different kinases using mul-
tiple ML methods [11]

NB, SVMs, LgR,
RFs, DNN

Different ML methods were compared using a standardized dataset
from ChEMBL [13] and standardized metrics [14]

NB, LgR, DTs,
RFs, SVMs, DNNs

Comparison between DNNs and other ML algorithms for diverse end-
points (bioactivity, solubility and ADME properties) [15]

Multitask DNNs Use of multitask DNNs as an improvement over single task learning
[16]

DNNs, SVMs, RFs,
NB, KNN

Shows that, when optimized, DNNs are capable of outperforming shal-
low methods across diverse activity classes [17]

DNNs, SVMs and
RFs

Results from the Tox21 competition. DNNs show good predictivity
on 12 different toxic endpoints [18]

Multitask DNNs Multitask learning provided benefits over single task models. Smaller
datasets tend to benefit more than larger datasets [19]

Multitask DNNs Performance analysis of multitask DNNs (DeepChem implementa-
tion) and related DL models on pharmaceutical datasets [20]

DNNs, RFs, DTs Comparison between multitask DNNs and alternative ML methods.
Multitask DNNs outperformed alternative methods [21]

DNNs, RFs Performance comparison between DNNs and RFs for QSARs using
different datasets and descriptors [12]

DNNs DL models to predict drug-induced liver injury [22]

Multitask DNNs Multitask vs Single Task learning. Multitask DNNs showed better
performance [23]

DNNs, SVMs, LgR,
KNN, etc

Comparison of DL performance against multiple ML methods using
data from ChEMBL [24]

NB and RFs Comparison between NB and RFs to make accurate ADME-related
activities predictions on 18 large QSAR datasets [25]

Shallow NNs Prediction of biological activities of structurally diverse ligands using
3 types of fingerprints (ECFP6, FP2 & MACCS) [26]

Bayesian QSAR,
PLS

Bayesian QSAR combines activities across the kinase family to predict
affinity, selectivity, and cellular activity [27]

case of DrugBank [4], PubChem BioAssay [5], ChEBI [6], MoleculeNet datasets
[7], ChemSpider [8] and T3DB: the toxic exposome database [9].

ML techniques, including SVMs, RFs and deep neural networks (DNNs) have
been used to discover compounds with desired biological activities. Table 1 sum-
marizes some of the most relevant studies in biological activity prediction using
AI. In general, DNNs exhibit better results than classic ML methods [10,11],
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where RF-based models are the most used and the ones showing better results,
even outperforming DNNs in some situations [12].

2.1 Compound Featurization

Information for biological activity prediction comes primarily from the chemical
structure of the compound. There has been a lot of research on how to transform
molecules into a form suited for ML algorithms so that the model can learn and
generalize the properties shared among the molecules. Some of the most use-
ful molecular featurization methods include line notations, fingerprints, weave,
graph convolutions and (NLP)-inspired embeddings.

Line Notations. Line notations express the 2D structure of compounds. These
approaches represent structures and chemical properties such as atoms, bonds,
aromaticity, chiral and isotopic information of compounds as compact strings of
characters [28]. The most common line notations are SMILES [29] and InChI [30].
Most chemical databases like PubChem [5], ChEMBL [13] and DrugBank [4]
provide line notations for the recorded compounds.

Fingerprints. Fingerprints are the most widely used molecular representations
in chemoinformatics. They consist of binary arrays, where each dimension rep-
resents the presence or absence of a particular substructure or property. Finger-
prints are used to encode multiple characteristics, including atomic attributes,
atomic environments, bond properties and bond positions which enables it to be
applied to tasks such as activity prediction. Extended-Connectivity Fingerprints
(ECFPs), Functional-Class Fingerprints (FCFPs), and the 166-bit Molecular
Access System (MACCS) are typical fingerprint-based featurization approaches.

Graph Convolutions. In this DL-based approach proposed by Duvenaud et al.
[31], the chemical structure of the molecule is initially represented as a graph with
atoms as nodes and bonds as edges, encoding the connectivity between atoms
and each atom’s local chemical environment. Then, different neighbor levels of
the molecule graph representation are fed into a single layer convolutional NN
to generate fixed-length vectors. The resulting vectors are transformed through
a pooling-like operation using the softmax function, and then they are summed
to form the final molecular-level vector representations.

Weave. The weave featurization method is very similar to graph convolutions.
It also encodes both the connectivity between atoms in a molecule and each
atom’s local chemical environment, but connectivity uses more detailed pair fea-
tures instead of information for the neighbor’s list. It also encodes both the
connectivity between atoms in a molecule and each atom’s local chemical envi-
ronment, but uses more detailed pair features instead of information for the
neighbors list. Weave modules combine and transform the atom-level and pair-
level features by applying specific convolution operators [32].
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NLP-Inspired Embeddings. Deep learning-based NLP techniques can be
directly applied to SMILES strings to generate continuous feature vectors
instead of learning from molecular graphs. The Seq2seq fingerprint [33] trans-
lates molecules represented as SMILES strings into continuous embeddings using
a model based on the sequence to sequence [34] machine translation model.
Mol2vec [35] is a method inspired by the Word2vec [36] word embedding algo-
rithm that learns continuous embeddings of compound substructures.

2.2 Sweetness Prediction

Sweetness prediction is a particular application of biological activity prediction,
very important for many disciplines, especially food chemistry. As sugars and sac-
charides are widely used in the food industry, their overconsumption can severely
affect human health, leading to serious diseases, such as obesity, diabetes and
cardiovascular diseases. It is, thus, of extreme importance to identify low-calorie
sweeteners present in natural or chemically synthesized compounds, avoiding,
this way, associated health risks while preserving the sweetness perception.

The high cost associated with compound sweetness determination in the
laboratory remains a barrier, justifying the necessity to build computational
models capable of learning the relationship between sweetness and the structure
of known sweeteners. Therefore, these models would facilitate the identification
and design of new sweeteners with different degrees of sweetness. Moreover,
existing sweeteners have been the subject of controversies regarding health and
food safety [37]. In this aspect, computational methods for biological activity
prediction can offer additional value by combining sweetness prediction with
other tasks such as toxicity and bitterness prediction, removing in this way
compounds with undesirable properties.

In recent years, multiple ML based models to predict compound sweetness
were developed. In 2011, Yang et al. [38], developed three quantitative models
(linear regression, neural networks (ANN), SVM) for the prediction of the sweet-
ness of 103 compounds. Zhong et al. [39], in 2013, developed two quantitative
models (linear regression and SVM) to predict the sweetness of 320 compounds.
In 2016 and 2017, Rojas et al. [40,41] used KNN to discriminate sweet from
non-sweet molecules. In the same year, Chéron et al. [42] used RF to predict
either sweetness, bitterness and toxicity properties. In 2018, Goel et al. [43]
developed QSAR models based on Genetic Function Approximation and ANNs
analysis to predict the sweetness of molecules. A RF-based binary classifier to
predict the bitterness and sweetness of chemical compounds was implemented
by Banerjee et al. [44]. Ojha et al. [45] proposed 13 new sweet molecules using
a quantitative structure-property relationship model and PLS regression analy-
sis. In 2019, Zheng et al. [46] implemented multiple ML methods (KNN, SVM,
Gradient Boosting Machine, RF, and DNN) for the prediction of sweeteners and
their corresponding relative sweetness. Comparing the results obtained in the
above mentioned studies is not completely feasible, because different datasets,
number and type of descriptors and validation methods were used. However, a
simple comparison shows that nonlinear methods such as RFs, SVMs, PLSs and
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Table 2. Available databases containing data on sweeteners/non-sweeteners.

Database Description

SweetenersDB [42]
(http://chemosim.unice.fr/
SweetenersDB/)

316 compounds belonging to 17 chemical families
with known sweetness values

SuperSweet [47]
(http://bioinformatics.charite.de/
sweet/)

More than 15,000 natural and artificial sweeten-
ers. Information on origin, sweetness class, predicted
toxicity, molecular targets, etc.

FooDB (http://foodb.ca/) The largest and most comprehensive database on
food constituents

BitterDB [48] (http://bitterdb.
agri.huji.ac.il/dbbitter.php)

Information on over 1,000 bitter-tasting natural &
synthetic compounds

FlavorDB [49] (https://cosylab.
iiitd.edu.in/flavordb/)

Contains 25,595 flavor molecules (618 sweet-tasting,
253 bitter-tasting)

Super natural II [50]
(http://bioinf-applied.charite.de/
supernatural new/index.php)

Database comprising 325,508 natural compounds.
Includes information about 2D structures, physic-
ochemical properties and predicted toxicity

ANNs exhibit slightly better results. These methods, in general, can more easily
capture the sweetness chemical space and therefore the structural diversity of
known sweeteners, generating better results. Nonetheless, more accurate models
are still in high demand. The use of DNNs models and taking into account the
complex interactions between different sweeteners and respective receptors can
further improve the results in the field.

With the generation of vast amounts of data from experimental and compu-
tational screening experiments, the need for structured databases to store and
publish the generated data in a well-organized way is increasing. As a result, sev-
eral compound databases that store thousands of molecules and respective chem-
ical attributes, molecular descriptors, activity measurements and other informa-
tion are available through the web. In particular, databases containing data on
sweet/bitter molecules are starting to become more common. Table 2 describes
the main databases containing sweet/non-sweet compounds.

3 Concluding Remarks

Here, we provide a review of literature related to AI algorithms used for bio-
logical activity prediction and in particular for sweetness prediction. Over the
last decades, ML witnessed rapid development, and multiple methods have been
successfully applied in chemoinformatics. Both shallow and DL methods have
been widely used in this task and they have an important role in its future.

With the increase in the complexity and the size of the available datasets,
DL models seem to frequently outperform traditional shallow ML algorithms. It
is also common to benefit from multitask learning, as it has been shown that the

http://chemosim.unice.fr/SweetenersDB/
http://chemosim.unice.fr/SweetenersDB/
http://bioinformatics.charite.de/sweet/
http://bioinformatics.charite.de/sweet/
http://foodb.ca/
http://bitterdb.agri.huji.ac.il/dbbitter.php
http://bitterdb.agri.huji.ac.il/dbbitter.php
https://cosylab.iiitd.edu.in/flavordb/
https://cosylab.iiitd.edu.in/flavordb/
http://bioinf-applied.charite.de/supernatural_new/index.php
http://bioinf-applied.charite.de/supernatural_new/index.php
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prediction of related properties seems to be beneficial to the predictive perfor-
mance of the models. The use of AI in chemoinformatics strongly benefits from
open source implementations of different ML models and from the availability
of extensive datasets allowing the implementation of fine-tuned complex NNs.
With the progress of AI in chemoinformatics, an increase in the use of these
approaches to automate compound discovery is expected.

With this review, we can conclude that improved methods are still in high
demand. Combining state-of-the-art deep learning models with different data
types and with approaches from different fields will be crucial for the discovery of
added-value compounds. Following this research line, we are implementing in our
group methods to improve the identification and generation of new sweeteners
that can be produced using only biologically feasible reactions, replacing the
chemical synthesis currently used.
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