68 research outputs found

    Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens.

    Get PDF
    BACKGROUND: Plants deploy immune receptors to detect pathogen-derived molecules and initiate defense responses. Intracellular plant immune receptors called nucleotide-binding leucine-rich repeat (NLR) proteins contain a central nucleotide-binding (NB) domain followed by a series of leucine-rich repeats (LRRs), and are key initiators of plant defense responses. However, recent studies demonstrated that NLRs with non-canonical domain architectures play an important role in plant immunity. These composite immune receptors are thought to arise from fusions between NLRs and additional domains that serve as "baits" for the pathogen-derived effector proteins, thus enabling pathogen recognition. Several names have been proposed to describe these proteins, including "integrated decoys" and "integrated sensors". We adopt and argue for "integrated domains" or NLR-IDs, which describes the product of the fusion without assigning a universal mode of action. RESULTS: We have scanned available plant genome sequences for the full spectrum of NLR-IDs to evaluate the diversity of integrations of potential sensor/decoy domains across flowering plants, including 19 crop species. We manually curated wheat and brassicas and experimentally validated a subset of NLR-IDs in wild and cultivated wheat varieties. We have examined NLR fusions that occur in multiple plant families and identified that some domains show re-occurring integration across lineages. Domains fused to NLRs overlap with previously identified pathogen targets confirming that they act as baits for the pathogen. While some of the integrated domains have been previously implicated in disease resistance, others provide new targets for engineering durable resistance to plant pathogens. CONCLUSIONS: We have built a robust reproducible pipeline for detecting variable domain architectures in plant immune receptors across species. We hypothesize that NLR-IDs that we revealed provide clues to the host proteins targeted by pathogens, and that this information can be deployed to discover new sources of disease resistance

    Spatial dissection of the Arabidopsis thaliana transcriptional response to downy mildew using fluorescence activated cell sorting

    Get PDF
    Changes in gene expression form a crucial part of the plant response to infection. In the last decade, whole-leaf expression profiling has played a valuable role in identifying genes and processes that contribute to the interactions between the model plant Arabidopsis thaliana and a diverse range of pathogens. However, with some pathogens such as downy mildew caused by the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis (Hpa), whole-leaf profiling may fail to capture the complete Arabidopsis response encompassing responses of non-infected as well as infected cells within the leaf. Highly localized expression changes that occur in infected cells may be diluted by the comparative abundance of non-infected cells. Furthermore, local and systemic Hpa responses of a differing nature may become conflated. To address this we applied the technique of Fluorescence Activated Cell Sorting (FACS), typically used for analyzing plant abiotic responses, to the study of plant-pathogen interactions. We isolated haustoriated (Hpa-proximal) and non-haustoriated (Hpa-distal) cells from infected seedling samples using FACS, and measured global gene expression. When compared with an uninfected control, 278 transcripts were identified as significantly differentially expressed, the vast majority of which were differentially expressed specifically in Hpa-proximal cells. By comparing our data to previous, whole organ studies, we discovered many highly locally regulated genes that can be implicated as novel in the Hpa response, and that were uncovered for the first time using our sensitive FACS technique

    Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1

    Get PDF
    Most land plant genomes carry genes that encode RPW8-NLR Resistance (R) proteins. Angiosperms carry two RPW8-NLR subclasses: ADR1 and NRG1. ADR1s act as 'helper' NLRs for multiple TIR- and CC-NLR R proteins in Arabidopsis. In angiosperm families, NRG1 co-occurs with TIR-NLR Resistance (R) genes. We tested whether NRG1 is required for signalling of multiple TIR-NLRs. Using CRISPR mutagenesis, we obtained an nrg1a-nrg1b double mutant in two Arabidopsis accessions, and an nrg1 mutant in Nicotiana benthamiana. These mutants are compromised in signalling of all TIR-NLRs tested, including WRR4A, WRR4B, RPP1, RPP2, RPP4 and the pairs RRS1/RPS4, RRS1B/RPS4B, CHS1/SOC3 and CHS3/CSA1. In Arabidopsis, NRG1 is required for the hypersensitive cell death response (HR) and full oomycete resistance, but not for salicylic acid induction or bacterial resistance. By contrast, nrg1 loss of function does not compromise the CC-NLR R proteins RPS5 and MLA. RPM1 and RPS2 (CC-NLRs) function is slightly compromised in an nrg1 mutant. Thus, NRG1 is required for full TIR-NLR function and contributes to the signalling of some CC-NLRs. Some NRG1-dependent R proteins also signal partially via the NRG1 sister clade, ADR1. We propose that some NLRs signal via NRG1 only, some via ADR1 only and some via both or neither

    Autoimmunity conferred by chs3-2D relies on CSA1, its adjacent TIR-NB-LRR encoding neighbour

    Get PDF
    Plant innate immunity depends on the function of a large number of intracellular immune receptor proteins, the majority of which are structurally similar to mammalian nucleotidebinding oligomerization domain (NOD)-like receptor (NLR) proteins. CHILLING SENSITIVE 3 (CHS3) encodes an atypical Toll/Interleukin 1 Receptor (TIR)-type NLR protein with an additional Lin-11, Isl-1 and Mec-3 (LIM) domain at its C-terminus. The gain-of-function mutant allele chs3-2D exhibits severe dwarfism and constitutively activated defense responses, including enhanced resistance to virulent pathogens, high defence marker gene expression, and salicylic acid accumulation. To search for novel regulators involved in CHS3-mediated immune signaling, we conducted suppressor screens in the chs3-2D and chs3-2D pad4-1 genetic backgrounds. Alleles of sag101 and eds1-90 were isolated as complete suppressors of chs3-2D, and alleles of sgt1b were isolated as partial suppressors of chs3-2D pad4-1. These mutants suggest that SAG101, EDS1-90, and SGT1b are all positive regulators of CHS3-mediated defense signaling. Additionally, the TIR-type NLR-encoding CSA1 locus located genomically adjacent to CHS3 was found to be fully required for chs3-2D-mediated autoimmunity. CSA1 is located 3.9kb upstream of CHS3 and is transcribed in the opposite direction. Altogether, these data illustrate the distinct genetic requirements for CHS3-mediated defense signaling

    The integrated LIM-peptidase domain of the CSA1-CHS3/DAR4 paired immune receptor detects changes in DA1 peptidase inhibitors in Arabidopsis

    Get PDF
    White blister rust, caused by the oomycete Albugo candida, is a widespread disease of Brassica crops. The Brassica relative Arabidopsis thaliana uses the paired immune receptor complex CSA1-CHS3/DAR4 to resist Albugo infection. The CHS3/DAR4 sensor NLR, which functions together with its partner, the helper NLR CSA1, carries an integrated domain (ID) with homology to DA1 peptidases. Using domain swaps with several DA1 homologs, we show that the LIM-peptidase domain of the family member CHS3/DAR4 functions as an integrated decoy for the family member DAR3, which interacts with and inhibits the peptidase activities of the three closely related peptidases DA1, DAR1, and DAR2. Albugo infection rapidly lowers DAR3 levels and activates DA1 peptidase activity, thereby promoting endoreduplication of host tissues to support pathogen growth. We propose that the paired immune receptor CSA1-CHS3/DAR4 detects the actions of a putative Albugo effector that reduces DAR3 levels, resulting in defense activation

    Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust (Albugo candida)

    Get PDF
    Arabidopsis thaliana accessions are universally resistant at the adult leaf stage to white rust (Albugo candida) races that infect the crop species Brassica juncea and Brassica oleracea. We used transgressive segregation in recombinant inbred lines to test if this apparent species-wide (nonhost) resistance in A. thaliana is due to natural pyramiding of multiple Resistance (R) genes. We screened 593 inbred lines from an Arabidopsis multiparent advanced generation intercross (MAGIC) mapping population, derived from 19 resistant parental accessions, and identified two transgressive segregants that are susceptible to the pathogen. These were crossed to each MAGIC parent, and analysis of resulting F2 progeny followed by positional cloning showed that resistance to an isolate of A. candida race 2 (Ac2V) can be explained in each accession by at least one of four genes encoding nucleotide-binding, leucine-rich repeat (NLR) immune receptors. An additional gene was identified that confers resistance to an isolate of A. candida race 9 (AcBoT) that infects B. oleracea. Thus, effector-triggered immunity conferred by distinct NLR-encoding genes in multiple A. thaliana accessions provides species-wide resistance to these crop pathogens

    A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana

    Get PDF
    Infectious disease is both a major force of selection in nature and a prime cause of yield loss in agriculture. In plants, disease resistance is often conferred by nucleotide-binding leucine-rich repeat (NLR) proteins, intracellular immune receptors that recognize pathogen proteins and their effects on the host. Consistent with extensive balancing and positive selection, NLRs are encoded by one of the most variable gene families in plants, but the true extent of intraspecific NLR diversity has been unclear. Here, we define a nearly complete species-wide pan-NLRome in Arabidopsis thaliana based on sequence enrichment and long-read sequencing. The pan-NLRome largely saturates with approximately 40 well-chosen wild strains, with half of the pan-NLRome being present in most accessions. We chart NLR architectural diversity, identify new architectures, and quantify selective forces that act on specific NLRs and NLR domains. Our study provides a blueprint for defining pan-NLRomes

    Transgressive segregation reveals mechanisms of Arabidopsis immunity to Brassica-infecting races of white rust (Albugo candida)

    Get PDF
    Arabidopsis thaliana accessions are universally resistant at the adult leaf stage to white rust (Albugo candida) races that infect the crop species Brassica juncea and Brassica oleracea. We used transgressive segregation in recombinant inbred lines to test if this apparent species-wide (nonhost) resistance in A. thaliana is due to natural pyramiding of multiple Resistance (R) genes. We screened 593 inbred lines from an Arabidopsis multiparent advanced generation intercross (MAGIC) mapping population, derived from 19 resistant parental accessions, and identified two transgressive segregants that are susceptible to the pathogen. These were crossed to each MAGIC parent, and analysis of resulting F 2 progeny followed by positional cloning showed that resistance to an isolate of A. candida race 2 (Ac2V) can be explained in each accession by at least one of four genes encoding nucleotide-binding, leucine-rich repeat (NLR) immune receptors. An additional gene was identified that confers resistance to an isolate of A. candida race 9 (AcBoT) that infects B. oleracea. Thus, effector-triggered immunity conferred by distinct NLR-encoding genes in multiple A. thaliana accessions provides species-wide resistance to these crop pathogens
    corecore