58 research outputs found
NaChBac: The Long Lost Sodium Channel Ancestor
In excitable cells, the main mediators of sodium conductance across membranes are voltage-gated sodium channels (Na(V)s). Eukaryotic Na(V)s are essential elements in neuronal signaling and muscular contraction and in humans have been causally related to a variety of neurological and cardiovascular channelopathies. They are complex heavily glycosylated intrinsic membrane proteins present in only trace quantities that have proven to be challenging objects of study. However, in recent years, a number of simpler prokaryotic sodium channels have been identified, with NaChBac from Bacillus halodurans being the most well-characterized to date. The availability of a bacterial Na(V) that is amenable to heterologous expression and functional characterization in both bacterial and mammalian systems has provided new opportunities for structure--function studies. This review describes features of NaChBac as an exemplar of this class of bacterial channels, compares prokaryotic and eukaryotic Na(V)s with respect to their structural organization, pharmacological profiling, and functional kinetics, and discusses how voltage-gated ion channels may have evolved to deal with the complex functional demands of higher organisms
Brevenal Inhibits Pacific Ciguatoxin-1B-Induced Neurosecretion from Bovine Chromaffin Cells
Ciguatoxins and brevetoxins are neurotoxic cyclic polyether compounds produced by dinoflagellates, which are responsible for ciguatera and neurotoxic shellfish poisoning (NSP) respectively. Recently, brevenal, a natural compound was found to specifically inhibit brevetoxin action and to have a beneficial effect in NSP. Considering that brevetoxin and ciguatoxin specifically activate voltage-sensitive Na+ channels through the same binding site, brevenal has therefore a good potential for the treatment of ciguatera. Pacific ciguatoxin-1B (P-CTX-1B) activates voltage-sensitive Na+ channels and promotes an increase in neurotransmitter release believed to underpin the symptoms associated with ciguatera. However, the mechanism through which slow Na+ influx promotes neurosecretion is not fully understood. In the present study, we used chromaffin cells as a model to reconstitute the sequence of events culminating in ciguatoxin-evoked neurosecretion. We show that P-CTX-1B induces a tetrodotoxin-sensitive rise in intracellular Na+, closely followed by an increase in cytosolic Ca2+ responsible for promoting SNARE-dependent catecholamine secretion. Our results reveal that brevenal and β-naphtoyl-brevetoxin prevent P-CTX-1B secretagogue activity without affecting nicotine or barium-induced catecholamine secretion. Brevenal is therefore a potent inhibitor of ciguatoxin-induced neurotoxic effect and a potential treatment for ciguatera
- …