45 research outputs found

    Management of MDR-TB in HIV co-infected patients in Eastern Europe: Results from the TB:HIV study

    Get PDF
    Objectives Mortality among HIV patients with tuberculosis (TB) remains high in Eastern Europe (EE), but details of TB and HIV management remain scarce. Methods In this prospective study, we describe the TB treatment regimens of patients with multi-drug resistant (MDR) TB and use of antiretroviral therapy (ART). Results A total of 105 HIV-positive patients had MDR-TB (including 33 with extensive drug resistance) and 130 pan-susceptible TB. Adequate initial TB treatment was provided for 8% of patients with MDR-TB compared with 80% of those with pan-susceptible TB. By twelve months, an estimated 57.3% (95%CI 41.5\u201374.1) of MDR-TB patients had started adequate treatment. While 67% received ART, HIV-RNA suppression was demonstrated in only 23%. Conclusions Our results show that internationally recommended MDR-TB treatment regimens were infrequently used and that ART use and viral suppression was well below the target of 90%, reflecting the challenging patient population and the environment in which health care is provided. Urgent improvement of management of patients with TB/HIV in EE, in particular for those with MDR-TB, is needed and includes widespread access to rapid TB diagnostics, better access to and use of second-line TB drugs, timely ART initiation with viral load monitoring, and integration of TB/HIV care

    Exploring perceptions of advertising ethics: an informant-derived approach

    Get PDF
    Whilst considerable research exists on determining consumer responses to pre-determined statements within numerous ad ethics contexts, our understanding of consumer thoughts regarding ad ethics in general remains lacking. The purpose of our study therefore is to provide a first illustration of an emic and informant-based derivation of perceived ad ethics. The authors use multi-dimensional scaling as an approach enabling the emic, or locally derived deconstruction of perceived ad ethics. Given recent calls to develop our understanding of ad ethics in different cultural contexts, and in particular within the Middle East and North Africa (MENA) region, we use Lebanon—the most ethically charged advertising environment within MENA—as an illustrative context for our study. Results confirm the multi-faceted and pluralistic nature of ad ethics as comprising a number of dimensional themes already salient in the existing literature but in addition, we also find evidence for a bipolar relationship between individual themes. The specific pattern of inductively derived relationships is culturally bound. Implications of the findings are discussed, followed by limitations of the study and recommendations for further research

    Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast

    Get PDF
    The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation

    Anticoagulant selection in relation to the SAMe-TT2R2 score in patients with atrial fibrillation. the GLORIA-AF registry

    Get PDF
    Aim: The SAMe-TT2R2 score helps identify patients with atrial fibrillation (AF) likely to have poor anticoagulation control during anticoagulation with vitamin K antagonists (VKA) and those with scores >2 might be better managed with a target-specific oral anticoagulant (NOAC). We hypothesized that in clinical practice, VKAs may be prescribed less frequently to patients with AF and SAMe-TT2R2 scores >2 than to patients with lower scores. Methods and results: We analyzed the Phase III dataset of the Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation (GLORIA-AF), a large, global, prospective global registry of patients with newly diagnosed AF and ≥1 stroke risk factor. We compared baseline clinical characteristics and antithrombotic prescriptions to determine the probability of the VKA prescription among anticoagulated patients with the baseline SAMe-TT2R2 score >2 and ≤ 2. Among 17,465 anticoagulated patients with AF, 4,828 (27.6%) patients were prescribed VKA and 12,637 (72.4%) patients an NOAC: 11,884 (68.0%) patients had SAMe-TT2R2 scores 0-2 and 5,581 (32.0%) patients had scores >2. The proportion of patients prescribed VKA was 28.0% among patients with SAMe-TT2R2 scores >2 and 27.5% in those with scores ≤2. Conclusions: The lack of a clear association between the SAMe-TT2R2 score and anticoagulant selection may be attributed to the relative efficacy and safety profiles between NOACs and VKAs as well as to the absence of trial evidence that an SAMe-TT2R2-guided strategy for the selection of the type of anticoagulation in NVAF patients has an impact on clinical outcomes of efficacy and safety. The latter hypothesis is currently being tested in a randomized controlled trial. Clinical trial registration: URL: https://www.clinicaltrials.gov//Unique identifier: NCT01937377, NCT01468701, and NCT01671007

    Association of the PHACTR1/EDN1 genetic locus with spontaneous coronary artery dissection

    Get PDF
    Background: Spontaneous coronary artery dissection (SCAD) is an increasingly recognized cause of acute coronary syndromes (ACS) afflicting predominantly younger to middle-aged women. Observational studies have reported a high prevalence of extracoronary vascular anomalies, especially fibromuscular dysplasia (FMD) and a low prevalence of coincidental cases of atherosclerosis. PHACTR1/EDN1 is a genetic risk locus for several vascular diseases, including FMD and coronary artery disease, with the putative causal noncoding variant at the rs9349379 locus acting as a potential enhancer for the endothelin-1 (EDN1) gene. Objectives: This study sought to test the association between the rs9349379 genotype and SCAD. Methods: Results from case control studies from France, United Kingdom, United States, and Australia were analyzed to test the association with SCAD risk, including age at first event, pregnancy-associated SCAD (P-SCAD), and recurrent SCAD. Results: The previously reported risk allele for FMD (rs9349379-A) was associated with a higher risk of SCAD in all studies. In a meta-analysis of 1,055 SCAD patients and 7,190 controls, the odds ratio (OR) was 1.67 (95% confidence interval [CI]: 1.50 to 1.86) per copy of rs9349379-A. In a subset of 491 SCAD patients, the OR estimate was found to be higher for the association with SCAD in patients without FMD (OR: 1.89; 95% CI: 1.53 to 2.33) than in SCAD cases with FMD (OR: 1.60; 95% CI: 1.28 to 1.99). There was no effect of genotype on age at first event, P-SCAD, or recurrence. Conclusions: The first genetic risk factor for SCAD was identified in the largest study conducted to date for this condition. This genetic link may contribute to the clinical overlap between SCAD and FMD

    GATA4 Regulates Epithelial Cell Proliferation to Control Intestinal Growth and Development in MiceSummary

    Get PDF
    Background & Aims: The embryonic small intestinal epithelium is highly proliferative, and although much is known about mechanisms regulating proliferation in the adult intestine, the mechanisms controlling epithelial cell proliferation in the developing intestine are less clear. GATA4, a transcription factor that regulates proliferation in other developing tissues, is first expressed early in the developing gut in midgut endoderm. GATA4 function within midgut endoderm and the early intestinal epithelium is unknown. Methods: By using Sonic Hedgehog Cre to eliminate GATA4 in the midgut endoderm of mouse embryos, we determined the impact of loss of GATA4 on intestinal development, including epithelial cell proliferation, between embryonic day (E)9.5 and E18.5. Results: We found that intestinal length and width were decreased in GATA4 mutants compared with controls. GATA4-deficient intestinal epithelium contained fewer cells, and epithelial girth was decreased. We further observed a decreased proportion of proliferating epithelial cells at E10.5 and E11.5 in GATA4 mutants. We showed that GATA4 binds to chromatin containing GATA4 consensus binding sites within cyclin D2 (Ccnd2), cyclin-dependent kinase 6 (Cdk6), and frizzled 5 (Fzd5). Moreover, Ccnd2, Cdk6, and Fzd5 transcripts were reduced at E11.5 in GATA4 mutant tissue. Villus morphogenesis was delayed, and villus structure was abnormal in GATA4 mutant intestine. Conclusions: Our data identify GATA4 as an essential regulator of early intestinal epithelial cell proliferation. We propose that GATA4 controls proliferation in part by directly regulating transcription of cell-cycle mediators. Our data further suggest that GATA4 affects proliferation through transcriptional regulation of Fzd5, perhaps by influencing the response of the epithelium to WNT signaling. Keywords: Transcriptional Regulation, WNT Signaling, Villus Morphogenesi

    GATA4 Is Sufficient to Establish Jejunal Versus Ileal Identity in the Small IntestineSummary

    No full text
    Background & Aims: Patterning of the small intestinal epithelium along its cephalocaudal axis establishes three functionally distinct regions: duodenum, jejunum, and ileum. Efficient nutrient assimilation and growth depend on the proper spatial patterning of specialized digestive and absorptive functions performed by duodenal, jejunal, and ileal enterocytes. When enterocyte function is disrupted by disease or injury, intestinal failure can occur. One approach to alleviate intestinal failure would be to restore lost enterocyte functions. The molecular mechanisms determining regionally defined enterocyte functions, however, are poorly delineated. We previously showed that GATA binding protein 4 (GATA4) is essential to define jejunal enterocytes. The goal of this study was to test the hypothesis that GATA4 is sufficient to confer jejunal identity within the intestinal epithelium. Methods: To test this hypothesis, we generated a novel Gata4 conditional knock-in mouse line and expressed GATA4 in the ileum, where it is absent. Results: We found that GATA4-expressing ileum lost ileal identity. The global gene expression profile of GATA4-expressing ileal epithelium aligned more closely with jejunum and duodenum rather than ileum. Focusing on jejunal vs ileal identity, we defined sets of jejunal and ileal genes likely to be regulated directly by GATA4 to suppress ileal identity and promote jejunal identity. Furthermore, our study implicates GATA4 as a transcriptional repressor of fibroblast growth factor 15 (Fgf15), which encodes an enterokine that has been implicated in an increasing number of human diseases. Conclusions: Overall, this study refines our understanding of an important GATA4-dependent molecular mechanism to pattern the intestinal epithelium along its cephalocaudal axis by elaborating on GATA4âs function as a crucial dominant molecular determinant of jejunal enterocyte identity. Microarray data from this study have been deposited into NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) and are accessible through GEO series accession number GSE75870. Keywords: Transcriptional Regulation, Jejunal Identity, Enterohepatic Signaling, Fgf15, FX

    Optimizing maturity and dose of iPSC-derived dopamine progenitor cell therapy for Parkinson's disease.

    No full text
    In pursuit of treating Parkinson's disease with cell replacement therapy, differentiated induced pluripotent stem cells (iPSC) are an ideal source of midbrain dopaminergic (mDA) cells. We previously established a protocol for differentiating iPSC-derived post-mitotic mDA neurons capable of reversing 6-hydroxydopamine-induced hemiparkinsonism in rats. In the present study, we transitioned the iPSC starting material and defined an adapted differentiation protocol for further translation into a clinical cell transplantation therapy. We examined the effects of cellular maturity on survival and efficacy of the transplants by engrafting mDA progenitors (cryopreserved at 17 days of differentiation, D17), immature neurons (D24), and post-mitotic neurons (D37) into immunocompromised hemiparkinsonian rats. We found that D17 progenitors were markedly superior to immature D24 or mature D37 neurons in terms of survival, fiber outgrowth and effects on motor deficits. Intranigral engraftment to the ventral midbrain demonstrated that D17 cells had a greater capacity than D24 cells to innervate over long distance to forebrain structures, including the striatum. When D17 cells were assessed across a wide dose range (7,500-450,000 injected cells per striatum), there was a clear dose response with regards to numbers of surviving neurons, innervation, and functional recovery. Importantly, although these grafts were derived from iPSCs, we did not observe teratoma formation or significant outgrowth of other cells in any animal. These data support the concept that human iPSC-derived D17 mDA progenitors are suitable for clinical development with the aim of transplantation trials in patients with Parkinson's disease

    Imaging of subcellular compartments in companion cells and phloem parenchyma cells.

    No full text
    <p>(a, c-h) Fluorescent proteins observed in leaves from plants resulting from crosses between <i>pSUC2</i>:<i>PP2-A1</i>:<i>CFP</i> plants and lines carrying fluorescent proteins targeted to different subcellular compartments. Overlay images, obtained by CLSM, with fluorescence signals shown in false colors; CFP is shown in green (a, c-h) and GFP, YFP or RFP in red (a, c-h) except in (b). Superimposed pixels are shown in yellow. (a) Observation of chloroplasts in the companion cells of a <i>pSUC2</i>:<i>PP2-A1</i>:<i>CFP</i> x <i>p35S</i>:<i>RbcS</i>:<i>YFP</i> plant (PP2-A1:CFP fluorescence is shown in green and RbcS:YFP in red). (b) Observation of the typical morphology of phloem cells of a <i>p35S</i>:<i>GFP</i>:<i>LTI6b</i> plant. GFP is shown in green and chloroplast autofluorescence is shown in red. Two types of phloem cells—companion cells and phloem parenchyma cells—were identified on the basis of plastid distribution (autofluorescence, shown in red). In these plants, GFP:LTI6b fluorescence (in green) could also be used to identify sieve elements. Phloem parenchyma cells are the largest cells and are located on the edge of the vasculature. Sieve elements lack chloroplasts. Companion cells display typical chloroplast alignments. (c) Observation of nuclei in the companion cells of a <i>pSUC2</i>:<i>PP2-A1</i>:<i>CFP</i> x <i>p35S</i>:<i>H2B</i>:<i>RFP</i> plant. Companion cells have square-like nuclei. (d) Observation of the endoplasmic reticulum in the companion cells of a <i>pSUC2</i>:<i>PP2-A1</i>:<i>CFP</i> x <i>p35S</i>:<i>ER</i>:<i>YFP</i> plant. In companion cells, the ER is found principally next to the plasma membrane and around the nucleus. On this image, the ER can also be seen in a sieve element aligned between two arrays of companion cells. (e) Observation of mitochondria in the companion cells of a <i>pSUC2</i>:<i>PP2-A1</i>:<i>CFP</i> x <i>p35S</i>:<i>COX4</i>:<i>GFP</i> plant. On this image, large numbers of mitochondria can be seen in the companion cells. (f) Observation of vacuoles in the companion cells of a <i>pSUC2</i>:<i>PP2-A1</i>:<i>CFP x p35S</i>:<i>yTIP</i>:<i>YFP</i> plant. The image shows several vacuoles per companion cell. (g) Observation of actin network in the companion cells of a <i>pSUC2</i>:<i>PP2-A1</i>:<i>CFP</i> x <i>p35S</i>:<i>FABD2</i>:<i>GFP</i> plant. Thick actin bundles can be seen whereas thin actin filaments are barely detectable. (h) Observation of cortical microtubules in bent companion cells at a vein junction in a <i>pSUC2</i>:<i>PP2-A1</i>:<i>CFP</i> x <i>p35S</i>:<i>GFP</i>:<i>MBD</i> plant. Stars indicate the vacuoles. Scale bar = 5 μm.</p
    corecore