470 research outputs found

    The ansamycin antibiotic, rifamycin SV, inhibits BCL6 transcriptional repression and forms a complex with the BCL6-BTB/POZ domain

    Get PDF
    BCL6 is a transcriptional repressor that is over-expressed due to chromosomal translocations, or other abnormalities, in ~40% of diffuse large B-cell lymphoma. BCL6 interacts with co-repressor, SMRT, and this is essential for its role in lymphomas. Peptide or small molecule inhibitors, which prevent the association of SMRT with BCL6, inhibit transcriptional repression and cause apoptosis of lymphoma cells in vitro and in vivo. In order to discover compounds, which have the potential to be developed into BCL6 inhibitors, we screened a natural product library. The ansamycin antibiotic, rifamycin SV, inhibited BCL6 transcriptional repression and NMR spectroscopy confirmed a direct interaction between rifamycin SV and BCL6. To further determine the characteristics of compounds binding to BCL6-POZ we analyzed four other members of this family and showed that rifabutin, bound most strongly. An X-ray crystal structure of the rifabutin-BCL6 complex revealed that rifabutin occupies a partly non-polar pocket making interactions with tyrosine58, asparagine21 and arginine24 of the BCL6-POZ domain. Importantly these residues are also important for the interaction of BLC6 with SMRT. This work demonstrates a unique approach to developing a structure activity relationship for a compound that will form the basis of a therapeutically useful BCL6 inhibitor

    Active nuclear import and cytoplasmic retention of activation-induced deaminase

    Full text link
    The enzyme activation-induced deaminase (AID) triggers antibody diversification in B cells by catalyzing deamination and consequently mutation of immunoglobulin genes. To minimize off-target deamination, AID is restrained by several regulatory mechanisms including nuclear exclusion, thought to be mediated exclusively by active nuclear export. Here we identify two other mechanisms involved in controlling AID subcellular localization. AID is unable to passively diffuse into the nucleus, despite its small size, and its nuclear entry requires active import mediated by a conformational nuclear localization signal. We also identify in its C terminus a determinant for AID cytoplasmic retention, which hampers diffusion to the nucleus, competes with nuclear import and is crucial for maintaining the predominantly cytoplasmic localization of AID in steady-state conditions. Blocking nuclear import alters the balance between these processes in favor of cytoplasmic retention, resulting in reduced isotype class switching.This work was supported by the Canadian Institutes of Health Research (MOP 84543) and a Canada Research Chair (to J.M.D.). A.O. was supported by a fellowship from the Canadian Institutes of Health Research Cancer Training Program at the IRCM. V.A.C. was supported in part by a Michel Saucier fellowship from the Louis-Pasteur Canadian Fund through the University of Montreal

    Tracking germinal center B cells expressing germ-line immunoglobulin γ1 transcripts by conditional gene targeting

    Get PDF
    Germinal centers (GCs) represent the main sites for the generation of high-affinity, class-switched antibodies during T cell-dependent antibody responses. To study gene function specifically in GC B cells, we generated Cγ1-cre mice in which the expression of Cre recombinase is induced by transcription of the Ig γ1 constant region gene segment (Cγ1). In these mice, Cre-mediated recombination at the fas, Igβ, IgH, and Rosa26 loci occurred in GC B cells as early as 4 days after immunization with T cell-dependent antigens and involved >85% of GC B cells at the peak of the GC reaction. Less than 2% of IgM+ B cells showed Cre-mediated recombination. These cells carried few Ig somatic mutations, expressed germ-line Cγ1- and activation-induced cytidine deaminase-specific transcripts and likely include GC B cell founders and/or plasma cell precursors. Cre-mediated recombination involved most IgG1, but also a fraction of IgG3-, IgG2a-, IgG2b-, and IgA-expressing GC and post-GC B cells. This result indicates that a GC B cell can transcribe more than one downstream CH gens before undergoing class switch recombination. The efficient induction of Cre expression in GC B cells makes the Cγ1-cre allele a powerful tool for the genetic analysis of these cells, as well as, in combination with a suitable marker for Cre-mediated recombination, the tracking of class-switched memory B and plasma cells in vivo. To expedite the genetic analysis of GC B cells, we have established Cγ1-cre F1 embryonic stem cells, allowing further rounds of gene targeting and the cloning of compound mutants by tetraploid embryo complementation. © 2006 by The National Academy of Sciences of the USA

    The impact of COVID on early childhood education and care and opportunities to strengthen the system

    Get PDF
    This study explores the implications of the COVID pandemic for access to and provision of early childhood education and care (ECEC) for 0–4-year-olds in England, and ways in which the ECEC system could be strengthened. It combines insights from qualitative and quantitative research, including: a systems mapping; a literature review; a survey of local authorities (LAs); analysis of a variety of national data sources; and, case studies involving qualitative interviews with parents, ECEC providers, LA staff and employer representatives. The data analysed was collected in 2020 and 2021. The study was funded by the Nuffield Foundation and the research was undertaken by a team from the Centre for Evidence and Implementation, the University of East London, Frontier Economics, Coram Family and Childcare and the Institute for Fiscal Studies
    corecore