41 research outputs found
Effect of the National Resident Assessment Instrument on Selected Health Conditions and Problems
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111253/1/j.1532-5415.1997.tb02972.x.pd
Recommended from our members
Pollinator monitoring more than pays for itself
1. Resilient pollination services depend on sufficient abundance of pollinating insects over time. Currently, however, most knowledge about the status and trends of pollinators is based on changes in pollinator species richness and distribution only. 2. Systematic, long‐term monitoring of pollinators is urgently needed to provide baseline information on their status, to identify the drivers of declines and to inform suitable response measures. 3. Power analysis was used to determine the number of sites required to detect a 30% change in pollinator populations over 10 years. We then evaluated the full economic costs of implementing four national monitoring schemes in the UK: (a) professional pollinator monitoring, (b) professional pollination service monitoring, (c) volunteer collected pan traps and (d) volunteer focal floral observations. These costs were compared to (a) the costs of implementing separate, expert‐designed research and monitoring networks and (b) the economic benefits of pollination services threatened by pollinator loss. 4. Estimated scheme costs ranged from £6,159/year for a 75‐site volunteer focal flower observation scheme to £2.7 M/year for an 800‐site professional pollination service monitoring network. The estimated research costs saved using the site network as research infrastructure range from £1.46–4.17 M/year. The economic value of UK crop yield lost following a 30% decline in pollinators was estimated at ~£188 M/year. 5. Synthesis and applications. We evaluated the full costs of running pollinator monitoring schemes against the economic benefits to research and society they provide. The annual costs of monitoring are <0.02% of the economic value of pollination services that would be lost after a 30% decline in pollination services. Furthermore, by providing high‐quality scientific data, monitoring schemes would save at least £1.5 on data collection per £1 spent. Our findings demonstrate that long‐term systematic monitoring can be a cost‐effective tool for both answering key research questions and setting action points for policymakers. Careful consideration must be given to scheme design, the logistics of national‐scale implementation and resulting data quality when selecting the most appropriate combination of surveyors, methods and site networks to deliver a successful scheme
Age-specific burden of cervical cancer associated with HIV: A global analysis with a focus on sub-Saharan Africa
HIV substantially worsens human papillomavirus (HPV) carcinogenicity and contributes to an important population excess of cervical cancer, particularly in sub-Saharan Africa (SSA). We estimated HIV- and age-stratified cervical cancer burden at a country, regional, and global level in 2020. Proportions of cervical cancer a) diagnosed in women living with HIV (WLHIV), and b) attributable to HIV, were calculated using age-specific estimates of HIV prevalence (UNAIDS) and relative risk. These proportions were validated against empirical data and applied to age-specific cervical cancer incidence (GLOBOCAN 2020). HIV was most important in SSA, where 24.9% of cervical cancers were diagnosed in WLHIV, and 20.4% were attributable to HIV (vs 1.3% and 1.1%, respectively, in the rest of the world). In all world regions, contribution of HIV to cervical cancer was far higher in younger women (as seen also in empirical series). For example, in Southern Africa, where more than half of cervical cancers were diagnosed in WLHIV, the HIV-attributable fraction decreased from 86% in women ≤34 years to only 12% in women ≥55 years. The absolute burden of HIV-attributable cervical cancer (approximately 28 000 cases globally) also shifted towards younger women: in Southern Africa, 63% of 5341 HIV-attributable cervical cancer occurred in women <45 years old, compared to only 17% of 6901 non-HIV-attributable cervical cancer. Improved quantification of cervical cancer burden by age and HIV status can inform cervical cancer prevention efforts in SSA, including prediction of the impact of WLHIV-targeted vs general population approaches to cervical screening, and impact of HIV prevention
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma
SummaryWe describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers
TRY plant trait database – enhanced coverage and open access
Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma
We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) based on multidimensional and comprehensive characterization, including mitochondrial DNA (mtDNA) and whole genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared to other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT up-regulation in cancer distinct from previously-observed amplifications and point mutations