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Summary

We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell

carcinomas (ChRCCs) based on multidimensional and comprehensive characterization, including

mitochondrial DNA (mtDNA) and whole genome sequencing. The result is consistent that ChRCC

originates from the distal nephron compared to other kidney cancers with more proximal origins.

Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a

component of the disease biology, while suggesting alternative roles for mtDNA mutations in

cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural

breakpoints within TERT promoter region, which correlates with highly elevated TERT expression

and manifestation of kataegis, representing a mechanism of TERT up-regulation in cancer distinct

from previously-observed amplifications and point mutations.

Introduction

Rare tumor types offer a unique opportunity to investigate and discover mechanisms of

tumorigenesis. Chromophobe kidney cancer (ChRCC) is a subtype of renal cell carcinoma

(RCC), representing ∼5% of this heterogenous group of cancers arising from the nephron

(Storkel et al., 1997), with 3,000 new cases annually in the United States (Jemal et al.,

2013). Although ChRCC typically exhibits an indolent pattern of local growth, with greater

than 90% ten-year cancer-specific survival (Amin et al., 2002; Przybycin et al., 2011),

aggressive features and metastasis can occur. ChRCC is associated with a distinct

aneuploidy pattern (Speicher et al., 1994); however, genome-wide evaluation of its somatic

mutation spectrum has not been reported. ChRCC is associated with germline mutation of

FLCN in the autosomal dominant cancer predisposition Birt-Hogg-Dubé (BHD) syndrome,

where 34% of BHD-associated kidney tumors are ChRCC (Nickerson et al., 2002;

Pavlovich et al., 2002; Schmidt et al., 2001), and with germline mutation of PTEN in

Cowden syndrome (Shuch et al., 2013). Previous studies have suggested a non-glycolytic

metabolic profile for ChRCC, using F-18-fluorodeoxyglucose PET/CT (Ho et al., 2012), and

have shown that the genomic profile comprises unique whole chromosome losses rather than

focal events (Speicher et al., 1994).

Genomic profiling of rare cancers, such as ChRCC, can provide a more complete picture of

the disease. Although very large sample numbers (>5000) may be needed for some disease

types in order to detect rare mutational events (Lawrence et al., 2014), in many cases there
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remain undiscovered frequent mutations that drive disease. When data integration across

multiple platforms is applied, patterns observed in one data type may be reflected in the

other data types, building a more conclusive set of findings with regard to revealing driver

events. For example, early DNA microarray studies of breast cancer, e.g. globally assaying a

single data type for 65 tumors (Perou et al., 2000) and incorporating clinical data, have had

an enduring impact on our understanding of breast and other cancers, while PBRM1

mutations were discovered in clear cell kidney cancers from an initial analysis of just 25

tumors (Varela et al., 2011). Understudied cancers, such as ChRCC, may hold this potential

for discovery as well.

Results

Copy Number and Whole Exome Analysis

The Cancer Genome Atlas (TCGA) collected a total of 66 primary ChRCC specimens

(Table S1) with matching normal tissue/blood, in order to better characterize the molecular

basis of this cancer using multiple data platforms (Tables 1 and S1). Our comprehensive

analysis of ChRCC involved a systematic examination by data type, including copy number

and whole-exome sequencing (WES). By SNP array analysis, loss of one copy of the entire

chromosome, for most or all of chromosomes 1, 2, 6, 10, 13, and 17, was seen in the

majority of cases (86%, Figure 1A). Losses of chromosomes 3, 5, 8, 9, 11, 18, and 21 were

also noted at significant frequencies (12-58%). There were no focal copy number events by

GISTIC analysis (Mermel et al., 2011), suggestive of a simpler chromosomal landscape for

ChRCC in comparison to that of other cancers, including the more common clear cell type

RCC (ccRCC). We subdivided our ChRCC cases according to previously defined histologic

categories of “classic” (n=47), which demonstrate the classical pale cytoplasmic features for

which the disease was named, and “eosinophilic” (n=19), based on abundant, eosinophilic

cytoplasm and densely packed mitochondria, by expert consensus pathology review

(Brunelli et al., 2005). While all classic cases showed the characteristic ChRCC copy

number pattern, only about half of the eosinophilic cases (10/19) showed the same, with four

eosinophilic cases showing no copy number alterations. This suggests a degree of genomic

heterogeneity that distinguishes the histopathology-based classifications.

WES of 66 ChRCC cases targeted ∼186,260 exons in ∼18,091 genes, achieving 90% target

coverage at a minimum of 20X for both tumor and matched normal samples. Overall,

ChRCC displayed a low median rate of exonic somatic mutations (∼0.4 per Mb) compared

to most tumors (Alexandrov et al., 2013), approximately 3-fold less than the median number

seen in ccRCC (which differences were also observable within strata defined by age or

stage), with the one exception showing elevated somatic mutation rate (>10/Mb by WES)

and mutation signature of DNA mismatch repair deficiency (Alexandrov et al., 2013). Using

alternative sequencing instrumentation, we validated 60 somatic mutation events for a set of

30 genes both arising from WES and having inferred biologically relevance (Table S2).

While our lower case numbers limited purely data-driven approaches to assigning statistical

significance to infrequently mutated genes, we did have sufficient power to identify

significant genes with a frequency of ∼10% (Lawrence et al., 2014). Only two significant

genes were thus identified (MutSig q<0.1): TP53 and PTEN.
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TP53 was frequently mutated in 32% of cases (21 of the 66 profiled), with mutations

correlating with decreased expression of p53 transcriptional targets (Figures S1A-S1C).

PTEN was the next most frequently mutated, with 9% (6 of 66) nonsilent mutations

detected. No other genes were found to be mutated at a frequency higher than 5%, though

mutations involving cancer-relevant genes were found at lower frequencies (Figure 1B).

Mutations were seen in MTOR (2 cases), NRAS (1 activating mutation), and TSC1 or TSC2

(4 cases), and two homozygous deletions were seen in PTEN, indicating that genomic

targeting of the mTOR pathway occurred overall in 15 (23%) of 66 ChRCC (Figure 1B).

Biological significance could be ascribed to infrequently mutated genes, in terms of

associated pathways, including the p53 and PTEN pathways (Table S2). The genetic

diseases BHD and TSC both predispose to the development of ChRCC, and associated

mutations converge in activation of the PTEN signaling pathway. Our study focused on

sporadic disease, and a surprisingly high percentage (∼47%) of our core cases did not show

alterations associated with either PTEN or p53 pathways. As no additional pathways

involving sizeable numbers of cases could be implicated from the exome data, our search

was extended to mtDNA and structural variant analysis, as described below.

DNA Methylation and RNA Analysis

TCGA data platforms allow for comparisons between tumor types

(Cancer_Genome_Atlas_Research_Network et al., 2013). For example, we observed

widespread differences in DNA methylation between ChRCC and ccRCC (Figure 2A),

involving over 64K loci out of ∼450K profiled (p<0.001, t-test using logit-transformed data,

beta value difference>0.1). ChRCC displayed more hypomethylation and fewer

hypermethylation events compared to ccRCC. We also observed epigenetic silencing of

CDKN2A/p16 in four ChRCC cases (Figure 2B). In principle, differential DNA methylation

patterns could involve cancer-relevant pathways, but may also reflect cell of origin of the

cancer (Shen and Laird, 2013). Based on immunohistochemical analyses (Prasad et al.,

2007), ChRCC has been postulated to arise from intercalated cells in the distal convoluted

tubule of the nephron, while ccRCC is thought to arise from cells in the proximal convoluted

tubule; however, this issue has remained unresolved. The above DNA methylation patterns

were consistent with distinct origins, leading us to further explore these origins using gene

expression data.

We examined our gene expression data in the context of an external gene expression dataset

of normal tissue microdissected from various regions of the nephron (Cheval et al., 2012).

Supervised analysis, globally comparing each TCGA ChRCC or ccRCC tumor expression

profile (n=66 and n=417, respectively) to that of each sample in the nephron atlas, showed

high mRNA expression correlations for ChRCC with distal regions of the nephron. ccRCC

gene expression, however, was correlated with patterns associated with the proximal

nephron (Figure 2C). These associations were also evident, when focusing on the subset of

differential genes in ChRCC versus ccRCC associated with inverse DNA methylation

changes (Figure 2D). These results put in context many of the widespread molecular

differences between these two kidney cancer types, as well as suggesting that cancers may

be defined in part by cell of origin in addition to genetic aberrations.
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In addition to widespread differences in gene expression between ChRCC and ccRCC, and

differences from normal kidney (Figure S2A and Table S3), unsupervised clustering of

mRNA profiles indicated further molecular heterogeneity within ChRCC, with at least two

subsets identified (Figure S2B) as defined by differential gene expression patterns. Cluster

analysis of miRNA profiles also indicated heterogeneity (Figure S2C), and we could identify

anti-correlations between miRNAs and their predicted mRNA targets (Table S4), including

an anti-correlation (False Discovery Rate, or FDR<0.01) involving miR-145 (low in ChRCC

versus normal) and the complex I-associated NDUFA4 gene (Figure S2D)(Kano et al.,

2010). Molecular correlates of patient survival in ChRCC were identifiable at levels of

mRNA, miRNA, and DNA methylation (Table S5); many of these correlates were shared

with those previously observed for ccRCC

(The_Cancer_Genome_Atlas_Research_Network, 2013) and included cell cycle genes, but

not the ‘Warburg effect’-like patterns of aggressive ccRCC

(The_Cancer_Genome_Atlas_Research_Network, 2013).

Pathway and Mitochondrial DNA Analysis

When viewed in the context of mitochondrial function, expression of nuclear-encoded genes

in ChRCC, as compared to normal kidney, suggested increased utilization of the Krebs cycle

and electron transport chain (ETC) for adenosine triphosphate (ATP) generation (Figures

3A, S3A, and S3B). In ChRCC, nearly all genes encoding enzymes in the Krebs cycle

showed increased expression over normal, with the entry of pyruvate into the Krebs cycle

via Acetyl CoA likely through the pyruvate dehydrogenase complex (PDC). Concordantly,

all complexes of the ETC demonstrated mRNA increases in at least one gene. These patterns

could reflect an increased level of mitochondrial biosynthesis, resulting in greater numbers

of mitochondria within each tumor cell; this possibility is supported by both the increased

expression of mitochondrial biogenesis regulator PPARGC1A (p<1E-5, t-test using log-

transformed data, Table S3), and increased mitochondrial genome copy numbers (four times

more on average in ChRCC versus normal kidney, Figures 3B and S3C). These findings

interestingly parallel the eosinophilic histology observed in some ChRCC, corresponding to

the high uptake of eosin by mitochondria. Eosinophilic ChRCC tumors share many features

with the benign variant oncocytoma, which is also characterized by dense accumulations of

mitochondria (Amin et al., 2008; Tickoo et al., 2000). Furthermore, the gene expression

landscape appeared very different from that of ccRCC, where expression of genes involved

in mitochondrial functions is strongly suppressed (Figure S3D)

(The_Cancer_Genome_Atlas_Research_Network, 2013). These findings suggest that

various bioenergetics strategies may support tumor growth, and that not all cancers

necessarily seek to minimize their reliance upon oxidative phosphorylation

(The_Cancer_Genome_Atlas_Research_Network, 2013).

Given the indicated prevalent role of mitochondria in ChRCC and the likelihood of rapid

mitochondrial genome replication (Figure 3B), we sequenced mtDNA from 61 of our 66

ChRCC cases, using a Polymerase Chain Reaction (PCR)-based amplification approach

(Table S6). In all, we identified 142 somatic mutation events (i.e. not present in the normal)

at various levels of heteroplasmy (i.e. mixture with other variants), 75 of these residing

within the commonly altered D-Loop non-coding region (Chatterjee et al., 2006). Thirty-five
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mutation events (involving 27 cases) were present in over 50% of mtDNA copies in the

tumor (>50% heteroplasmy) (Figure 4A). Human mtDNA encodes 13 proteins involved in

respiration and oxidative phosphorylation (Figure 3A), and we found 15 nonsilent mutations

in 12 ChRCC cases involving these genes (>50% heteroplasmy), all of which validated

using alternative strategies, including WGS-based analysis (Larman et al., 2012)(Table S6).

Based on previous functional studies in oncocytoma (Gasparre et al., 2008; Mayr et al.,

2008; Simonnet et al., 2003), and as many of our variants represented frameshift

substitutions, these mtDNA mutations are thought, in general, to lead to inactivation, rather

than activation, of the associated protein.

Electron transport chain Complex I genes were altered in 18% of cases (n=11, Figures 3A

and 1B and Table S3); the most frequently altered gene was MT-ND5, in six cases (all with

>70% heteroplasmy), with five of these being histologically classified as eosinophilic

ChRCC (p<0.01, one-sided Fisher's exact test), and three showing no copy number

abnormalities (p<0.002). MT-ND5 is essential for the activity of complex I (Chomyn, 2001),

which is responsible for the transfer of electrons from NADH to ubiquinone. One ChRCC

case had a single base insertion at position 12417 that changes the length of an 8-bp

homopolymer tract in MT-ND5, which has been observed previously in several other cancer

types (Larman et al., 2012); another case had insertion at 12384, at which position a

mutation was found elsewhere in oncocytoma and associated with loss of complex I activity

(Mayr et al., 2008). Two ChRCC cases each had single base deletions at position 13230 of

MT-ND5, but no other mtDNA mutations were recurrent in our cases. We also found MT-

ND5-mutated ChRCC cases to have a distinct gene transcription signature (Figures 4B, S4A,

and S4B, 719 genes with p<0.001 by t-test, FDR<0.05), which was shared by other

eosinophilic cases and were not limited to genes in regions of recurrent copy number

abnormality (Figure S4C). Genes with high expression in MT-ND5-mutated cases were

enriched for those associated with mitochondria (43 with Gene Ontology term

“mitochondrion”, p<5E-6, one-sided Fisher's exact test), including several with roles in ETC

(SDHB, NDUFS1, ATP5F1, COX10, COX11, Table S3). Notably, mutations in complex I

did not result in expression patterns associated with loss of oxidative phosphorylation

(Figure 4C), as might be assumed (Larman et al., 2012), suggesting possible alternative roles

for complex I alteration in cancer-associated metabolic activity (Figure S4D). The

associations made here, involving mtDNA mutations with mitochondrial abundance and

differential gene expression patterns (which may be unique to ChRCC and related cancers),

could perhaps suggest either a compensatory role for loss of complex I function, or selective

pressures operating to promote alternative pathways.

Whole Genome Analysis

WGS for 50 of our 66 ChRCC cases was performed (60X and 30X coverage for paired

tumor and normal, respectively). Meerkat algorithm (Yang et al., 2013) was applied to

detect genomic rearrangements, with an average of 16 found per case (range 0-207, Figure

S5A), but without involving recurrent gene-gene fusions. By WGS analysis, a subset of

ChRCC manifested kataegis (Figures 5A and S5B), a phenomenon involving highly

localized substitution mutations (C>T or C>G). Consistent with observations in other

cancers (Alexandrov et al., 2013; Nik-Zainal et al., 2012), we found that regions of kataegis
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in ChRCC were found in the vicinity of genomic rearrangements (Figures 5A and S5B,

average of 150 rearrangements by pter/qter region). Three ChRCC WGS profiles showed

particularly strong patterns involving chromosomal regions 3p, 5p, 5q, 8q, 13q, or 15q

(Figure 5B). A mutation signature consistent with APOBEC cytidine deaminase activity

(Alexandrov et al., 2013; Roberts et al., 2013) was significantly enriched in kataegis regions

as well as in tightly spaced mutation clusters forming kataegis events (Figures S5C-S5F,

Table S7). While not detectable in ChRCC WES data (Alexandrov et al., 2013), WGS

mutation spectra of six ChRCC cases, including the three with strong kataegis patterns,

showed statistically significant (albeit moderate) APOBEC-patterned mutagenesis across the

entire genome (Figure S5C). APOBEC3B mRNA expression was also elevated in ChRCC

compared to normal kidney (Figure S5G).

We compared gene expression profiles between ChRCC cases with and without a strong

kataegis pattern (n=3 and n=47, respectively), and identified 29 differentially expressed

genes (FDR<0.05) including TERT (p<1E-10, t-test, FDR<1E-6, Figure 5C). The TERT

gene itself showed a wide range of expression levels across ChRCC, from undetectable to

hundreds of units by RNA-seq. Focusing our attention on TERT, we sequenced the promoter

region for recently identified mutations (C228T and C250T) (Huang et al., 2013); three

cases harbored C228T mutations, but were associated with only marginal TERT expression

levels (average expression ∼1 unit). WGS analysis of DNA copy within the TERT region

identified some copy number variation, but not at levels that would account for the extent of

deregulated expression. However, multiple cases did show abrupt changes in copy number,

at points that fell within the region 10 kb upstream of the TERT transcription start site

(Figure 5D). This observation suggested the existence of structural breakpoints, leading us

to reexamine our Meerkat-generated results with greater scrutiny.

Subsequent WGS analysis identified genomic rearrangements involving the TERT promoter

region, leading to breakpoints within the region in six out of 50 ChRCC cases (Figure 5D

and Table 2); these cases also had the highest levels of TERT expression (average>500 units,

p<1E-20, t-test; Table 2 and Figure 5E), even compared to cases with 228T mutation, and

three showed the strongest manifestation of kataegis (p=0.001, one-sided Fisher's exact). In

five ChRCC cases, the TERT-associated rearrangements were intrachromosomal (one

involving part of PDCD6), while the sixth case involved NEK5 on chromosome 13. When

considering intra-tumor heterogeneity, in most cases these variants were estimated to reside

in nearly all of the cells (when counting the numbers of concordant versus discordant read

pairs), which would indicate that the TERT-associated rearrangements represent early events

and therefore possible drivers. Of the seven rearrangements identified by WGS, we

confirmed six (involving six cases) by PCR, by designing primers that spanned both sides of

the breakpoint junction (Figure 6A and Table S8), allowing for amplification of DNA

spanning the breakpoint region in the tumor sample (Figures 6B and S6); subsequent

sequencing of the PCR product independently confirmed the junction in each case (Figure

6C). While point mutations in the TERT promoter, leading to up-regulation of TERT itself,

have been recently reported in cancers such as melanoma (Heidenreich et al., 2013; Huang

et al., 2013), our results represent another phenomenon, of recurrent genomic rearrangement

breakpoints in the TERT promoter being associated with elevated TERT expression in
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cancer. A precise mechanism remains to be elucidated, though, as a result of rearrangement,

a number of cis-regulatory elements were found to be placed in close proximity to the core

promoter of TERT (Figure S7).

Discussion

With this comprehensive molecular survey of ChRCC, we have made several important

findings, in particular the observed recurrent genomic structural rearrangements involving

the TERT promoter region and elevated TERT expression, and our results raise intriguing

questions regarding cancer, involving the role of mtDNA alterations and the role of the cell

of origin. The above key findings were made possible only by our comprehensive approach,

where, for example, we had no prior hypotheses regarding TERT at the onset of our study.

Additionally, mtDNA mutations in cancer, particularly those involving MT-ND5 and

complex I, have been hypothesized elsewhere to recapitulate the Warburg effect (Larman et

al., 2012), though the corresponding expression and histological patterns observed in our

data were consistent with a complex metabolic phenotype rather than simple loss of

oxidative phosphorylation. Taken together, our key findings further illustrate the need to

survey cancers outside of exome boundaries, e.g. by incorporating WGS or mtDNA

sequencing as part of an integrative, multi-platform analysis.

Through integration of molecular data from less common cancers, we can learn more about

more frequently encountered diseases. Here, for example, our analysis of ChRCC led to

additional insights regarding ccRCC. RCC represents a collection of highly distinct tumors

arising from different lineages within the nephron, with distinct molecular and genetic

features reflecting independent processes of tumorigenesis (Linehan, 2012). Given the

complexity of function assigned to an organ such as the kidney, different cancers arising

from this organ may not necessarily appear similar to each other (Alexandrov et al., 2013;

The_Cancer_Genome_Atlas_Network, 2012). Our multi-platform analyses clearly confirm

that ChRCC is a distinct disease entity from, and shares little cell lineage or genomic

characteristics with, ccRCC, further reinforcing the notion that disease-specific therapies are

needed for rarer tumors such as ChRCC, rather than simply adopting conventional

therapeutic strategies used for ccRCC. Given the clear genetic differences between ChRCC

and ccRCC, our results would suggest cell of origin as a key factor in disease determination,

observations that could inform future efforts to fractionate the pool of susceptible cells for

ChRCC or ccRCC modeling or preventative interventions. In addition, these data will serve

as a resource for future explorations of other tumors of kidney origin, such as papillary renal

cell carcinomas, while being broadly relevant as well to the study of other cancers, as

metabolic, genomic structural alterations, and cellular factors that influence the spectrum of

genetic events contributing to cancer development are further realized.

The gene expression patterns, increased mitochondrial numbers, and histological patterns

associated with ChRCC all indicate an increased importance of a distinct mitochondrial

respiration program in this disease. Renal oncocytoma, a benign renal tumor that, like

ChRCC, may also arise from the distal nephron, shares several similarities with ChRCC

(particularly with its eosinophilic subtype), including abundant, eosinophilic cytoplasm and

densely packed mitochondria (Amin et al., 2008; Tickoo et al., 2000). Mitochondrial
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accumulation in renal oncocytomas has been hypothesized to be a compensatory mechanism

for inefficient oxidative phosphorylation (Simonnet et al., 2003), where loss of complex I

activity may result from somatically acquired homoplasmic mutations in mitochondrial

complex I genes (Gasparre et al., 2008; Mayr et al., 2008; Simonnet et al., 2003). However,

gene expression in ChRCC would indicate that increased oxidative phosphorylation is

maintained in complex I-altered tumors, suggesting a metabolic shift supporting the growth

of this tumor, and counter to the Warburg-like phenomenon observed in high grade, high

stage ccRCC and many other cancers (The_Cancer_Genome_Atlas_Research_Network,

2013), which would appear consistent with previous observations, using metabolic imaging

to demonstrate uptake of radiolabeled acetate but not glucose in ChRCC (Ho et al., 2012). In

general, cancer cells derive much of their ATP through oxidative phosphorylation (Ward

and Thompson, 2012), and cancer-associated reprogramming of mitochondria and of other

metabolic pathways, besides glycolysis and the Warburg effect, have recently received much

attention (Currie et al., 2013; Ward and Thompson, 2012). Further studies to dissect the

precise role of mtDNA alterations in cancer, and mitochondrial activities promoting cancer

growth, could shed light on how core metabolic pathways may be altered in ChRCC and

other malignant diseases.

Our finding of recurrent DNA rearrangement breakpoints within the TERT promoter region

in over 10% of evaluated cases represents a mechanism for increased TERT expression in

cancer different from point mutations observed in a wide variety of cancers (Heidenreich et

al., 2013; Huang et al., 2013), gene amplification (Weir et al., 2007; Y et al., 2005), and

germline polymorphisms (Rafnar et al., 2009). TERT is well-recognized as having roles in

telomere maintenance and DNA repair, where deregulation of telomerase is a ubiquitous

feature of human cancers. The previously-observed TERT promoter mutations (C228T and

C250T) create de novo E-twenty six/ternary complex factors (Ets/TCF) binding sites, which

have been observed to increase transcriptional activity from the promoter by two-to fourfold

(Huang et al., 2013). Interestingly, the TERT expression levels of the six cases with

independently validated TERT promoter rearrangements were much higher than those cases

with C228T promoter mutations, suggesting that these rearrangements might have an even

more potent effect on up-regulation of the gene. The precise mechanism of how these

rearrangements affect expression remains to be elucidated; they could possibly involve

rearranged cis-regulatory elements or could allow the core TERT promoter to escape from

the native condensed chromatin environment (Zhao et al., 2009). The observed association

of TERT with kataegis is also intriguing. Elsewhere, rearrangement of DNA sequences

upstream of TERT have been reported in immortalized, non-tumorigenic fibroblasts, leading

to activated telomerase in cells surviving the crisis stage of immortalization (Zhao et al.,

2009), which involves chromosomal instability and rearrangements due to loss of telomere

capping activity; in the setting of human cancer, this would suggest that TERT-associated

rearrangements would be involved in many cases at an early stage in tumorigenesis.

Future applications of the information presented here will include comparative analysis with

other cancer types, for the possible existence elsewhere of structural rearrangements

involving promoters for TERT or for other key drivers. As a resource with a large set of

whole genome sequences, integrated with a broad array of high quality platform datasets,
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other relationships between genomic structural alterations and transcriptional components,

including noncoding RNAs, remain to be uncovered. As our data represent single biopsies,

future studies might focus on heterogeneity between biopsies from the same tumor

(Gerlinger et al., 2012); additionally, sub-clonal analysis may shed light on early vs late

somatic events in ChRCC tumorigenesis. Our study also revealed that divergent approaches

for uncovering mtDNA mutations (long-range PCR versus WGS (Larman et al., 2012)) are

highly complementary to each other, allowing WGS data from other cancers to be similarly

mined for mtDNA mutations, with the additional step of combining these data with that of

other platforms, in order to better understand the role of the mitochondria in cancer. Finally,

the underlying datasets presented here represent part of an interlocking toolset, that can be

combined with those of other cancers (Cancer_Genome_Atlas_Research_Network et al.,

2013), for further discovery of driver alterations, both within and beyond the exome.

Experimental Procedures

Patient and Sample Characteristics

With informed consent, biospecimens were collected from newly diagnosed patients with

ChRCC undergoing surgical resection and who had received no prior treatment for their

disease. Samples were obtained with approval from institutional review boards at Brigham

and Women's Hospital, Memorial Sloan-Kettering Cancer Center, National Cancer Institute,

and The University of Texas M.D. Anderson Cancer Center. Using a co-isolation protocol,

DNA and RNA were purified. Details of sample preparation are described in the

Supplemental Experimental Procedures.

Data Generation

In total, 66 ChRCC cases were assayed on at least one molecular profiling platform (Table

1), which platforms included: (1) RNA sequencing; (2) DNA methylation arrays; (3)

miRNA sequencing; (4) Affymetrix SNP arrays; (5) whole exome sequencing; (6) whole

genome sequencing; and (7) mtDNA sequencing (using long-range PCR to amplify

mtDNA). As described above and in the Supplemental Experimental Procedures, both single

platform analyses and integrated cross-platform analyses were performed. Sequence files are

available from CGHub (https://cghub.ucsc.edu/). All other molecular, clinical and

pathological data are available through the TCGA Data Portal (https://tcga-data.nci.nih.gov/

tcga/).

Whole-Genome and Exome Sequencing Analysis

Massively Parallel Sequencing Exome capture was performed using NimbleGen (custom

designed) VCRome 2.1 (42MB) according the manufacturer's instructions. All exome and

whole-genome sequencing was performed on the Illumina HiSeq platforms. Basic alignment

and initial sequence analysis were carried out using the Mercury analysis pipeline (Reid et

al., 2014).
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MtDNA Sequencing Analysis

MtDNA was isolated from tissue samples using long-range PCR methods. Amplified

mtDNA PCR products were constructed into Illumina paired-end libraries, and raw

sequence data were pre-processed and aligned using the Mercury pipeline.

RNA Sequencing Analysis

Both mRNA and miRNA libraries were separately generated from total RNA and

constructed using manufacturer protocols. Sequencing was done on the Illumina HiSeq

platform. Read mapping and downstream data analysis were performed as described in the

Supplemental Experimental Procedures.

Array Data Analysis

DNA was hybridized to Affymetrix SNP 6.0 arrays and Illumina Infinium

HumanMethylation450 (HM450) BeadChip arrays, according to manufacturer protocols.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Article Highlights: CANCER-CELL-D-14-00457

• Comprehensive molecular analysis of 66 kidney chromophobe cases

• Global molecular patterns provide clues as to this cancer's cell of origin

• mtDNA sequencing reveals loss-of-function mutations in NADH dehydrogenase

subunits

• Genomic structural rearrangements involving TERT promoter region
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Significance

Rare diseases can provide insights into the biology of more common pathologies. Using

diverse molecular platforms, we deconstructed ChRCC, a tumor characterized by slow

but persistent growth and high resistance to conventional cancer therapies. Global

molecular patterns provide clues as to this cancer's cell of origin. MtDNA alterations

represent an integral component of the molecular portrait of ChRCC. The observed

TERT promoter rearrangements may result from genomic instability in precancerous

cells undergoing the crisis stage of immortalization, leading to activated telomerase.

These data will facilitate further discovery of driver alterations extending beyond the

exome as well as the generation of hypotheses that can advance our molecular

understanding of this and other cancers.
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Figure 1. Gene mutations and copy alterations in Chromophobe Renal Cell Carcinoma
(ChRCC)
(A) Copy number alterations (red, gain; blue, loss of one copy) by cytoband region (marker:

darker color, p arm; lighter color, q arm) in ChRCC and ccRCC. (B) Genomic alterations in

ChRCC samples, each column representing a sample. See also Figure S1 and Table S2.

Davis et al. Page 24

Cancer Cell. Author manuscript; available in PMC 2015 September 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. DNA methylation and gene expression differences between ChRCC and ccRCC
(A) Heatmap showing a randomly selected 20% of a total of 64,021 DNA methylation loci

in normal kidney, ChRCC, and ccRCC (red, high; blue, low). (B) Epigenetic silencing of

CDKN2A locus in four ChRCC cases. Exon 1a expression corresponds to p16INK4a

isoform. (C) A cartoon of nephron (left) and heatmaps showing inter-sample correlations

(red, positive) between profiles of kidney tumors (columns; TCGA data, arranged by

subtype) and profiles of kidney nephon sites (rows; data set from Cheval et al., 2012). Glom,

Kidney Glomerulus; S1/S2, Kidney Proximal Tubule; MTAL, Kidney Medullary Thick

Ascending Limb of Henle's Loop; CTAL, Kidney cortical Thick Ascending Limb of Henle's

Loop; DCT, Kidney Distal Convoluted Tubule; CNT, Kidney Connecting Tubule; CCD,

Kidney Cortical Collecting Duct; OMCD, Kidney Outer Medullary Collecting Duct. (D)
Genes showing coordinate methylation and expression changes between ChRCC and

ccRCC, with the corresponding patterns in the nephron by anatomical site. See also Figure

S2 and Tables S3-S5.
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Figure 3. Molecular alterations in ChRCC involve mitochondria
(A) Mutations and gene expression differences between ChRCC and normal kidney in the

context of the mitochondrion. Red and blue shading represents increased and decreased

expression of nuclear-encoded genes, respectively, in ChRCC; two-sided t-test and fold

change by unpaired analysis. Mutation rates are also indicated for mitochondrial DNA

(mtDNA) encoded genes (not evaluated for expression): gray, no mutation; yellow,

mutations detected. (B) mtDNA copy number analysis. p value by two-sided t-test with

unequal variance. Box plots represent 5%, 25%, median, 75%, and 95%. See also Figure S3.
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Figure 4. Integrative analysis of mtDNA mutations in ChRCC
(A) mtDNA somatic mutations (with >50% heteroplasmy) in 61 ChRCC, by LR-PCR

method. Red, variants that result in amino acid change. (B) Gene expression difference (719

genes with p<0.001 by t-test, FDR<0.05) between ChRCC cases harboring MT-ND5

mutations in most mtDNA copies (>70% heteroplasmy) versus other ChRCC. (C)
Expression of nuclear-encoded subunits of Complexes I-V, or “OX-PHOS,” in ChRCC and

ccRCC, with (>50% heteroplasmy) or without harboring complex I (Cx I) mutations,

relative to normal kidney. See also Figure S4 and Table S6.

Davis et al. Page 27

Cancer Cell. Author manuscript; available in PMC 2015 September 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. Kataegis and TERT in ChRCC
(A) Examples of a strong kataegis pattern in two ChRCC cases. ‘Rainfall’ plots of mutations

by Whole Genome Sequencing (WGS) order events by genomic location. Vertical axis

denotes genomic distance of each mutation from the previous mutation. (B) WGS profiles

for 50 ChRCC cases, each scored by genomic region (chromosome pter/qter) for kataegis.

The three ChRCC cases scoring particularly strong are indicated at the bottom. Score for a

given region represents a one-sided Fisher's exact test, for enrichment of C>T or C>G

mutations involving inter-mutation distances below 10 kb (corrected for testing of multiple
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regions). (C) A set of 29 differentially expressed genes (False Discovery Rate, or

FDR<0.05), including TERT, observed in ChRCC cases with strong kataegis versus other

ChRCC. (D) Copy variation and DNA breakpoint analysis identifying genomic

rearrangements involving the promoter region of TERT for the 50 ChRCC cases (case

ordering the same for panels B, C, and D). The six cases harboring rearrangements involving

TERT are indicated (pink triangles). (E) TERT expression levels in the ChRCC cases with

TERT promoter Structural Variant (SV), in the ChRCC cases with TERT promoter mutation

(SNV), and in the remaining cases, as well as in normal kidney samples. p values by two-

sided t-test on log-transformed data. Box plots represent 5%, 25%, median, 75%, and 95%.

See also Figure S5 and Table S7.
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Figure 6. Genomic structural variants (SVs) involving TERT promoter
(A) Schematic represenation of the PCR approach used to validate TERT promoter SVs in

the six ChRCC cases and the DNA sequence sorrounding the breaking point in each case.

For each SV, PCR primers (P1/P2/P3/P4) were designed to span both sides of the breakpoint

junction, as illustrated. (B) For case KN-8435 (as an example), DNA spanning the SV

breakpoint region could be amplified in the tumor sample (but not in the paired normal

sample). (C) For each of the six cases, amplified DNA representing SV was confirmed by

sequencing (PacBio platform, which features long reads), with sufficient reads and expected
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length of the PCR product being observed (top, for KN-8435), and with estimated

breakpoint positions being close to those of WGS results (bottom). See also Figure S6 and

Table S8.
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Table 1

Summary of data types.

Data Type Platforms Cases Data access

TCGA core sample set (n=66 total cases)

Whole exome DNA sequence Illumina 66 Controlled

Whole genome DNA sequence Illumina 50 Controlled

Mitochondrial DNA sequence Illumina (LR-PCR) 61 Controlled

DNA copy number/genotype Affymetrix SNP 6 66 Controlled - CEL files
Open - copy number

mRNA expression Illumina 66 Controlled - BAM files
Open - expression

miRNA expression Illumina 66 Controlled - BAM files
Open - expression

CpG DNA methylation Illumina 450K array 66 Open

LR-PCR, Long-range polymerase chain reaction to amplify mitochondrial DNA; SNP, single nucleotide polymorphism.

See also Table S1.
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