28 research outputs found

    Invited letter to editor in response to: Finland’s handling of selenium is a model in these times of coronavirus infections.

    Get PDF
    This response by the authors is in reply to a letter from Ulfberg and Stehlik (https://doi.org/10.1017/S0007114520003827) in comment to the authors' orginal article (https://doi.org/10.1017/S0007114520003128) that suggested that SE status was an important factor in determining the host response to viral infections

    Selenium and viral infection: are there lessons for COVID-19?

    Get PDF
    Selenium (Se) is a micronutrient that is essential for human health. Sub-optimal Se status is common, occurring in a significant proportion of the population across the world, including parts of Europe and China. Human and animal studies have shown that Se status is a key determinant of the host response to viral infections. In this review, we address the question whether Se intake is a factor in determining the severity of response to COVID-19. Emphasis is placed on epidemiological and animal studies which suggest that Se affects host response to RNA viruses and on the molecular mechanisms by which Se and selenoproteins modulate the inter-linked redox homeostasis, stress response and inflammatory response. Together these studies indicate that Se status is an important factor in determining the host response to viral infections. Therefore, we conclude that Se status is likely to influence human response to the SARS-CoV-2 infection and that Se status is one (of several) risk factors which may impact on the outcome of SARS-CoV-2 infection, particularly in populations where Se intake is suboptimal or low. We suggest the use of appropriate markers to assess the Se status of COVID-19 patients and possible supplementation may be beneficial in limiting the severity of symptoms, especially in countries where Se status is regarded as sub-optimal

    Association between maternal micronutrient status, oxidative stress and common genetic variants in antioxidant enzymes at 15 weeks’ gestation in nulliparous women who subsequently develop pre-eclampsia

    Get PDF
    Aims: Pre-eclampsia is a pregnancy-specific condition affecting 2-7% of women and a leading cause of perinatal and maternal morbidity and mortality. Deficiencies of specific micronutrient antioxidant activities associated with copper, selenium, zinc and manganese, have previously been linked to pre-eclampsia at time of disease. Our aims were to investigate whether maternal plasma micronutrient concentrations and related antioxidant enzyme activities are altered prior to pre-eclampsia onset and to examine the dependence on genetic variations in these antioxidant enzymes. Methods: Pre-disease plasma samples (15+1 weeks’ gestation) were obtained from women enrolled in the international SCreening fOr Pregnancy Endpoints (SCOPE) study who subsequently developed pre-eclampsia (n=244), and age- and BMI-matched normotensive controls (n=472). Micronutrient concentrations were measured by inductively coupled plasma mass spectrometry; associated antioxidant enzyme activities, selenoprotein-P, caeruloplasmin concentrations and activities, antioxidant capacity and markers of oxidative stress were measured by colorimetric assays. Sixty four tagSNPs within genes encoding the antioxidant enzymes and selenoprotein-P were genotyped using allele-specific competitive PCR. Results: Plasma copper and caeruloplasmin concentrations were modestly, but significantly elevated in women who subsequently developed pre-eclampsia (both P<0.001) compared to controls (median [IQR], copper: 1957.4 [1787, 2177.5] vs. 1850.0 [1663.5, 2051.5] ”g/L; caeruloplasmin: 2.5[1.4, 3.2] vs. 2.2[1.2, 3.0] ”g/ml). There were no differences in other micronutrients or enzymes between groups. No relationship was observed between genotype for single nucleotide polymorphisms (SNPs) and antioxidant enzyme activity. Conclusions: This analysis of a prospective cohort study reports maternal micronutrient concentrations in combination with associated antioxidant enzymes and SNPs in their encoding genes in women at 15 weeks’ gestation that subsequently developed pre-eclampsia. The modest elevation in copper may contribute to oxidative stress, later in pregnancy, in those women that go on to develop pre-eclampsia. The lack of evidence to support the hypothesis that functional SNPs influence antioxidant enzyme activity in pregnant women argues against a role for these genes in the aetiology of pre-eclampsia

    Prediagnostic selenium status, selenoprotein gene variants and association with breast cancer risk in a european cohort study

    Get PDF
    Selenium (Se) may help prevent breast cancer (BC) development. Owing to limited observational evidence, we investigated whether prediagnostic Se status and/or variants in the selenoprotein genes are associated with BC risk in a large European cohort. Se status was assessed by plasma measures of Se and its major circulating proteins, selenoprotein P (SELENOP) and glutathione peroxidase 3 (GPX3), in matched BC case-control pairs (2208 for SELENOP; 1785 for GPX3 and Se) nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). Single nucleotide polymorphisms (SNPs, n = 452) in 55 selenoprotein and Se metabolic pathway genes and an additional 18 variants previously associated with Se concentrations were extracted from existing genotyping data within EPIC for 1564 case-control pairs. Multivariable-adjusted logistic regression models were used to calculate the odds ratios (ORs) and 95 % confidence intervals (CIs) of the association between Se status markers, SNP variants and BC risk. Overall, there was no statistically significant association of Se status with BC risk. However, higher GPX3 activity was associated with lower risk of premenopausal BC (4th versus 1st quartile, OR = 0.54, 95 % CI: 0.30-0.98, Ptrend = 0.013). While none of the genetic variant associations (P ≀ 0.05) retained significance after multiple testing correction, rs1004243 in the SELENOM selenoprotein gene and two SNPs in the related antioxidant TXN2 gene (rs4821494 and rs5750261) were associated with respective lower and higher risks of BC at a significance threshold of P ≀ 0.01. Fourteen SNPs in twelve Se pathway genes (P ≀ 0.01) in interaction with Se status were also associated with BC risk. Higher Se status does not appear to be associated with BC risk, although activity of the selenoenzyme GPX3 may be inversely associated with premenopausal BC risk, and SNPs in the Se pathway alone or in combination with suboptimal Se status may influence BC risk.</p

    Association of selenoprotein and selenium pathway gnotypes with risk of colorectal cancer and interaction with selenium status

    Get PDF
    Selenoprotein genetic variations and suboptimal selenium (Se) levels may contribute to the risk of colorectal cancer (CRC) development. We examined the association between CRC risk and genotype for single nucleotide polymorphisms (SNPs) in selenoprotein and Se metabolic pathway genes. Illumina Goldengate assays were designed and resulted in the genotyping of 1040 variants in 154 genes from 1420 cases and 1421 controls within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Multivariable logistic regression revealed an association of 144 individual SNPs from 63 Se pathway genes with CRC risk. However, regarding the selenoprotein genes, only TXNRD1 rs11111979 retained borderline statistical significance after adjustment for correlated tests (PACT = 0.10; PACT significance threshold was P < 0.1). SNPs in Wingless/Integrated (Wnt) and Transforming growth factor (TGF) beta-signaling genes (FRZB, SMAD3, SMAD7) from pathways affected by Se intake were also associated with CRC risk after multiple testing adjustments. Interactions with Se status (using existing serum Se and Selenoprotein P data) were tested at the SNP, gene, and pathway levels. Pathway analyses using the modified Adaptive Rank Truncated Product method suggested that genes and gene x Se status interactions in antioxidant, apoptosis, and TGF-beta signaling pathways may be associated with CRC risk. This study suggests that SNPs in the Se pathway alone or in combination with suboptimal Se status may contribute to CRC development

    Association between Polymorphisms in Glutathione Peroxidase and Selenoprotein P Genes, Glutathione Peroxidase Activity, HRT Use and Breast Cancer Risk.

    Get PDF
    Breast cancer (BC) is one of the most common cancers in women. Evidence suggests that genetic variation in antioxidant enzymes could influence BC risk, but to date the relationship between selenoproteins and BC risk remains unclear. In this report, a study population including 975 Danish cases and 975 controls matched for age and hormone replacement therapy (HRT) use was genotyped for five functional single nucleotide polymorphisms (SNPs) in SEPP1, GPX1, GPX4 and the antioxidant enzyme SOD2 genes. The influence of genetic polymorphisms on breast cancer risk was assessed using conditional logistic regression. Additionally pre-diagnosis erythrocyte GPx (eGPx) activity was measured in a sub-group of the population. A 60% reduction in risk of developing overall BC and ductal BC was observed in women who were homozygous Thr carriers for SEPP1 rs3877899. Additionally, Leu carriers for GPX1 Pro198Leu polymorphism (rs1050450) were at ∌2 fold increased risk of developing a non-ductal BC. Pre-diagnosis eGPx activity was found to depend on genotype for rs713041 (GPX4), rs3877899 (SEPP1), and rs1050450 (GPX1) and on HRT use. Moreover, depending on genotype and HRT use, eGPx activity was significantly lower in women who developed BC later in life compared with controls. Furthermore, GPx1 protein levels increased in human breast adenocarcinoma MCF7 cells exposed to ÎČ-estradiol and sodium selenite.In conclusion, our data provide evidence that SNPs in SEPP1 and GPX1 modulate risk of BC and that eGPx activity is modified by SNPs in SEPP1, GPX4 and GPX1 and by estrogens. Our data thus suggest a role of selenoproteins in BC development

    Selenium and Chronic Diseases: A Nutritional Genomics Perspective

    No full text
    Mechanistic data have revealed a key role for selenium (Se) and selenoproteins in biological pathways known to be altered in multifactorial diseases, such as cellular maintenance, response to oxidative stress and correct protein folding. Although epidemiological studies indicate that low Se intake is linked to increased risk for various chronic diseases, supplementation trials have given confusing outcomes, suggesting that additional genetic factors could affect the relationship between Se and health. Genetic data support this hypothesis, as risk for several chronic diseases, in particular cancer, was linked to a number of single nucleotide polymorphisms (SNP) altering Se metabolism, selenoprotein synthesis or activity. Interactions between SNPs in selenoprotein genes, SNPs in related molecular pathways and biomarkers of Se status were found to further modulate the genetic risk carried by the SNPs. Taken together, nutritional genomics approaches uncovered the potential implication of some selenoproteins as well as the influence of complex interactions between genetic variants and Se status in the aetiology of several chronic diseases. This review discusses the results from these genetic associations in the context of selenoprotein functions and epidemiological investigations and emphasises the need to assess in future studies the combined contribution of Se status, environmental stress, and multiple or individual SNPs to disease risk

    Association of Selenoprotein and Selenium Pathway Genotypes with Risk of Colorectal Cancer and Interaction with Selenium Status

    No full text
    Selenoprotein genetic variations and suboptimal selenium (Se) levels may contribute to the risk of colorectal cancer (CRC) development. We examined the association between CRC risk and genotype for single nucleotide polymorphisms (SNPs) in selenoprotein and Se metabolic pathway genes. Illumina Goldengate assays were designed and resulted in the genotyping of 1040 variants in 154 genes from 1420 cases and 1421 controls within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Multivariable logistic regression revealed an association of 144 individual SNPs from 63 Se pathway genes with CRC risk. However, regarding the selenoprotein genes, only TXNRD1 rs11111979 retained borderline statistical significance after adjustment for correlated tests (PACT = 0.10; PACT significance threshold was P < 0.1). SNPs in Wingless/Integrated (Wnt) and Transforming growth factor (TGF) beta-signaling genes (FRZB, SMAD3, SMAD7) from pathways affected by Se intake were also associated with CRC risk after multiple testing adjustments. Interactions with Se status (using existing serum Se and Selenoprotein P data) were tested at the SNP, gene, and pathway levels. Pathway analyses using the modified Adaptive Rank Truncated Product method suggested that genes and gene x Se status interactions in antioxidant, apoptosis, and TGF-beta signaling pathways may be associated with CRC risk. This study suggests that SNPs in the Se pathway alone or in combination with suboptimal Se status may contribute to CRC development.European CommissionHealth Research BoardLigue contre le CancerInstitut Gustave RoussyMutuelle GĂ©nĂ©rale de l’Education NationaleInstitut National de la SantĂ© et de la Recherche MĂ©dicale (INSERM)German Cancer AidGerman Cancer Research CenterGerman Federal Ministry of Education and Researc

    Association of Selenoprotein and Selenium Pathway Genotypes with Risk of Colorectal Cancer and Interaction with Selenium Status

    No full text
    Selenoprotein genetic variations and suboptimal selenium (Se) levels may contribute to the risk of colorectal cancer (CRC) development. We examined the association between CRC risk and genotype for single nucleotide polymorphisms (SNPs) in selenoprotein and Se metabolic pathway genes. Illumina Goldengate assays were designed and resulted in the genotyping of 1040 variants in 154 genes from 1420 cases and 1421 controls within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Multivariable logistic regression revealed an association of 144 individual SNPs from 63 Se pathway genes with CRC risk. However, regarding the selenoprotein genes, only TXNRD1 rs11111979 retained borderline statistical significance after adjustment for correlated tests (PACT = 0.10; PACT significance threshold was P < 0.1). SNPs in Wingless/Integrated (Wnt) and Transforming growth factor (TGF) beta-signaling genes (FRZB, SMAD3, SMAD7) from pathways affected by Se intake were also associated with CRC risk after multiple testing adjustments. Interactions with Se status (using existing serum Se and Selenoprotein P data) were tested at the SNP, gene, and pathway levels. Pathway analyses using the modified Adaptive Rank Truncated Product method suggested that genes and gene x Se status interactions in antioxidant, apoptosis, and TGF-beta signaling pathways may be associated with CRC risk. This study suggests that SNPs in the Se pathway alone or in combination with suboptimal Se status may contribute to CRC development.European CommissionHealth Research BoardLigue contre le CancerInstitut Gustave RoussyMutuelle GĂ©nĂ©rale de l’Education NationaleInstitut National de la SantĂ© et de la Recherche MĂ©dicale (INSERM)German Cancer AidGerman Cancer Research CenterGerman Federal Ministry of Education and ResearchDanish Cancer SocietyHealth Research Fund (FIS) of the Spanish Ministry of HealthCIBER en EpidemiologĂ­a y Salud PĂșblica (CIBERESP), SpainISCIII RETICSpanish Regional Governments of Andalusia, Asturias, Basque Country, Murcia (No 6236) and Navarra and the Catalan Institute of OncologyCancer Research UKMedical Research Council, UKHellenic Health FoundationItalian Association for Research on CancerItalian National Research CouncilCompagnia di San PaoloDutch Ministry of Public Health, Welfare and Sports (VWS)Netherlands Cancer Registry (NKR)LK Research FundsDutch Prevention FundsDutch ZON (ZorgOnderzoek Nederland)World Cancer Research Fund (WCRF)Statistics Netherlands (The Netherlands)Swedish Cancer SocietySwedish Scientific CouncilRegional Governments of Skane and Vasterbotten, SwedenNordforsk center of excellence programme HELGADeutsche Forschungsgemeinschaft (DFG Research Unit 2558 TraceAge, Scho 849/6-1)Associazione Italiana per la Ricercasul Cancro-AIRC-Ital
    corecore