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Abstract

Breast cancer (BC) is one of the most common cancers in women. Evidence suggests that genetic variation in antioxidant
enzymes could influence BC risk, but to date the relationship between selenoproteins and BC risk remains unclear. In this
report, a study population including 975 Danish cases and 975 controls matched for age and hormone replacement therapy
(HRT) use was genotyped for five functional single nucleotide polymorphisms (SNPs) in SEPP1, GPX1, GPX4 and the
antioxidant enzyme SOD2 genes. The influence of genetic polymorphisms on breast cancer risk was assessed using
conditional logistic regression. Additionally pre-diagnosis erythrocyte GPx (eGPx) activity was measured in a sub-group of
the population. A 60% reduction in risk of developing overall BC and ductal BC was observed in women who were
homozygous Thr carriers for SEPP1 rs3877899. Additionally, Leu carriers for GPX1 Pro198Leu polymorphism (rs1050450) were
at ,2 fold increased risk of developing a non-ductal BC. Pre-diagnosis eGPx activity was found to depend on genotype for
rs713041 (GPX4), rs3877899 (SEPP1), and rs1050450 (GPX1) and on HRT use. Moreover, depending on genotype and HRT use,
eGPx activity was significantly lower in women who developed BC later in life compared with controls. Furthermore, GPx1
protein levels increased in human breast adenocarcinoma MCF7 cells exposed to b-estradiol and sodium selenite.In
conclusion, our data provide evidence that SNPs in SEPP1 and GPX1 modulate risk of BC and that eGPx activity is modified
by SNPs in SEPP1, GPX4 and GPX1 and by estrogens. Our data thus suggest a role of selenoproteins in BC development.
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Introduction

Breast cancer (BC) is a major cause of death in the Western

societies [1]. Inherited BRCA1 and BRCA2 mutations account for a

significant proportion (5–10%) of all breast cancer cases among

white women in the United States [2]. Despite identification of

additional risk factors such as endocrine factors, alcohol and body

mass index [3,4], much of the aetiology of BC remains unclear. It

has been suggested that generation of oxidative stress within breast

tissue may play a role in cancer initiation and development by

causing DNA damage and mutations [5,6]. On the basis of this

hypothesis several studies have investigated whether genetic

polymorphisms in antioxidant enzymes influence either suscepti-

bility to BC or prognosis after diagnosis [7,8,9,10].

One focus of such studies is the genes encoding the selenocys-

teine-containing selenoproteins. Selenoproteins, which carry out

the major biological activity of micronutrient selenium (Se), are

potentially important with respect to BC development because

they protect cells from damaging free radicals [11] and because Se

status, as assessed by serum Se concentration, has been shown to

decrease in BC patients compared with healthy controls [12,13].

Glutathione peroxidases 1 (GPx1) and 4 (GPx4) are well

characterised antioxidant selenoenzymes that detoxify peroxide

radicals and lipid hydroperoxides, respectively [14]. Selenoprotein

P (SePP) exhibits both Se transport and antioxidant functions [15].

These three genes contain common genetic functional polymor-

phisms. Rs1050450 in the GPX1 gene causes an amino acid

change from Pro to Leu at codon 198 [16], with the Leu variants

being less active than its Pro counterpart [17]. Rs713041 in GPX4

affects protein binding to the 39untranslated region (39UTR) of the

mRNA close to an RNA structure (selenocysteine insertion

sequence: SECIS) required for selenoprotein synthesis, although

the nature of the proteins affected has not been defined [18,19,20].

The human SePP gene (SEPP1) contains several functional

polymorphisms, including rs3877899 (Ala234Thr) and rs7579 (a

G/A base change in the 39UTR of SEPP1 mRNA) which affect

plasma and lymphocyte selenoprotein activity in vivo and the

relative proportion of plasma SePP isoforms [21,22]; in addition

both SNPs have also been reported to be associated with colorectal
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and prostate cancer risk [23,24,25]. A small number of functional

variants have been reported in other selenoprotein genes [18] and

in non-selenoprotein genes such as rs4880 in the SOD2 gene

encoding antioxidant manganese superoxide dismutase (MnSOD)

[23,24,26].

To date, the study of selenoprotein genetic variants in relation

to BC risk has been limited. A higher frequency of the Leu variant

of rs1050450 (GPX1) was found in breast tumour DNA compared

to normal tissue, probably due to loss of heterozygosity in the

tumour cells [17]. Two subsequent genetic association studies

failed to identify an association of rs1050450 alone with BC risk

[9,27], but risk was increased in individuals carrying both the Leu

variant in GPX1 and the Ala variant for rs4880 (SOD2) [28]. In

addition, carriage of the Leu variant for rs1050450 in combination

with alcohol intake was associated with higher BC risk [10]. Thus,

it is still unclear whether rs1050450 (GPX1) is a risk factor for BC

[29]. Additionally, an association of rs713041 (GPX4) genotype

and disease prognosis has been reported [26]. However, no genetic

association study of genotype for either rs713041 (GPX4) or for any

SNPs in SEPP1 and BC risk has been carried out so far, although

lymphocyte GPx4 mRNA expression was found to be lower in

breast cancer patients than controls [30].

On the basis of the key role of Selenoprotein P in Se transport

and the functions of GPx1, GPx4 and MnSOD in antioxidant

defence mechanisms, we hypothesize that functional genetic

variants in the corresponding genes influence the susceptibility to

BC. To address this we focussed on known functional SNPs in

these genes and genotyped BC patients and controls from the

Danish prospective ’Diet, Cancer and Health Study’, expanding

on an earlier report [10] by increasing both the number of

participants and the number of genetic variants genotyped, and by

including tumour histology and grade in the analysis.

Materials and Methods

Study design and participants
The subjects for the present study were selected from the

ongoing Danish ‘‘Diet, Cancer and Health’’ cohort study [31].

Between December 1993 and May 1997, 79,729 women aged 50

to 64 years, born in Denmark, living in the Copenhagen or

Aarhus areas and having no previous cancers at this time were

invited to participate in the study. A total of 29,875 women (37%)

accepted the invitation. Cohort members were followed up for

diagnosis of BC from date of entry until either the date of diagnosis

of any cancer (except for non-melanoma skin cancer) using record

linkage to the Danish Cancer Registry up to 2003 or afterwards

with record linkage to the Danish Pathology Databank, date of

death, date of emigration, or April 27th, 2006, whichever came

first. The study group comprised a total of 975 women diagnosed

with BC during a follow-up period until April 27th, 2006 [32,33]

and included 377 previously described postmenopausal women

with breast cancer and matched controls identified at follow-up

until 2003 [10,33,34,35]. For each case with diagnosed BC, one

matched control was selected [32]. The control was cancer-free at

the exact age at diagnosis of the case and was further matched on

age at inclusion into the cohort (half-year intervals) and on use of

hormone replacement therapy (HRT) (current/former/never). For

the cases, tumour classification according to grade (ductal grade 1,

Table 1. Baseline characteristics of the study population.

Variable Cases (N = 975) Controls (N = 975)

Mean age [95%CI] 57.2 [56.9–57.4] 57.2 [56.9–57.4]

Present smoking (%) 23.1 22.6

Mean Body mass index [95%CI] 25.4 [25.1–25.7] 25.7 [25.2–25.7]

Ductal breast cancer 659 (67.6%)

Grade 1 267 (27.4%)

Grade 2 265 (27.2%)

Grade 3 127 (13%)

Non ductal breast cancer 190 (19.4%)

Tumour Classification Unknown 126 (13%)

HRT use

Never 332 (34%) 332 (34%)

Current 519 (53.2%) 519 (53.2%)

Former 124 (12.8%) 124 (12.8%)

Duration of HRT use in years (among current users) 6.6[6.1–7] 6.9[6.4–7.4]

School education

Low (%) 302 (31%) 341 (35%)

Medium (%) 476 (48.9%) 461 (47.4%)

High (%) 196 (20.1%) 171 (17.6%)

Parous (%) 84.8 87.8

Mean Number of births [95%CI] 1.8 [1.7–1.9] 1.9 [1.9–2]

Mean Age at first birth, years [95%CI] 23.9 [23.6–24.2] 23.5 [23.16–23.7]

Mean alcohol intake in g/day [95%CI] 15.3 [13.7–16.9] 14.1 [12.8–15.5]

Mean selenium intake in mg/day [95%CI] 65.1 [63.1–67.2] 67.8 [65.3–70.3]

doi:10.1371/journal.pone.0073316.t001

Selenoprotein SNPs,GPx1 Activity and Breast Cancer
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2 or 3) or histology (ductal or non-ductal) was carried out following

criteria recommended by Danish Breast Cancer Cooperative

Group (see [36]). Total Se intake was estimated from food

frequency questionnaire data on dietary intake and use of

supplements [10]. Alcohol intake was calculated from the food

frequency questionnaire data as described previously [32].

The Diet, Cancer and Health study and the present sub-study

were approved by the regional Ethical Committees on Human

Studies in Copenhagen and Aarhus (jr.nr.(KF)11-037/01) and

(jr.nr.(KF)01-045/93), and by the Danish Data Protection Agency.

All participants gave written consent, and the procedure was

approved by the regional Ethical Committees on Human Studies

in Copenhagen and Aarhus.

Blood sampling and storage
30 ml blood were collected from non-fasting participants at the

time of recruitment. Plasma, serum, lymphocytes, and erythrocytes

were isolated and frozen at 220uC within 2 hours. At the end of

the day of collection, all samples were stored in liquid nitrogen.

Erythrocyte GPX activity was determined previously [10].

Genotyping
DNA was isolated from frozen lymphocytes as previously

described [37]. Generally, 100 mg DNA were obtained from 107

lymphocytes. Twenty ng of DNA was genotyped in 5 ul

containing 1x Mastermix (Applied Biosystems), 100 nM probes,

and 900 nM primers and analysed by allelic discrimination on an

ABI7900HT (Applied Biosystems). Controls with known geno-

types were included in each run, and repeated genotyping of 10%

yielded 100% identical genotypes. Genotyping of 377 pairs for

GPX1 Pro198Leu (rs1050450) has been published previously [10]

and extended to the whole cohort. Primers and probes for the

other SNPs were as follows:SOD2 (rs4880) Val16Ala PCR forward;

59-GGC TGT GCT TTC TCG TCT TCA-39, PCR reverse: 59-

CAT GAT CTG CGC GTT GATG-39, probes: T-allele: 59-FAM-

CTC CGG TTT TGGG-MGB-39 and C-allele: 59-VIC-CTC CGG

CTT TGGG-MGB-39; GPX1 (rs1050450) was as previously

Figure 1. Regulation of GPx activity and protein levels. (A) shows the association of rs713041 genotype (GPX4) with pre-diagnosis erythrocyte
GPx (eGPx) activity (Anova, p = 0.015). EGPx activity was lower in TT women who developed BC at a later stage in life. (B) eGPX activity was higher
activity in women using HRT (Anova, p = 0.001). No differences were observed between cases and controls. (C) Combination of HRT use and rs1050450
in GPX1 affects eGPX activity (Anova, main effects of HRT p = 0.004, rs1050450 p = 0.001). HRT use increases eGPX activity in all controls, but not in Leu
carriers who developed BC at a later stage in life. (D) MCF7 cells were exposed to 10nM b-estradiol (b-E2) 6 40nM sodium selenite (Se). Western
blotting of total cell protein revealed as significant increase in GPx1 protein level when cells were treated with b-E2 compared with Se, Se+ b-E2
compared with b-E2 alone or Se alone (Kruskal-Wallis test, effect of treatment p = 0.005; Mann Whitney test* = p,0.05). Values shown are means 6
SEM (n = 3).
doi:10.1371/journal.pone.0073316.g001
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published; PCR forward, 59-TGT GCC CCT ACG CAG GTA

CA-39; PCR reverse, 59-CCC CCG AGA CAG CAG CA-39; C

allele probe, 59-VICCTG TCT CAA GGG CCC AGC TGTG

CTAMRA; and T allele probe, 59-FAMCTG TCT CAA GGG CTC

AGC TGT GCCTTAMRA-39 [38]; GPX4 (rs713041) PCR forward:

59-CCC ACT ATT TCT AGC TCC ACA AGTG-39 and PCR

reverse 59-GTC ATG AGT GCC GGT GGAA-39, probes were

T-allele: 59-FAM-ACG CCC TTG GAGC -MGB-39 and C-allele:

59-VIC-ACG CCC TCG GAGC-MGB-39; SEPP1; rs3877899 was

determined using a premade Taqman assay (Assay 2841533_10

Applied Biosystems) and rs7579 primers were: PCR forward: 5-

‘CAA AAA AGT GAG AAT GAC CTT CAA ACT-3’ and PCR

reverse: 59-ATG CTG GAA ATG AAA TTG TGT CTA GA-39,

probes G-allele: 59-VIC-AAA ATA GGA CAT ACT CCC C-MGB-

39 and A-allele: 59-FAM-AAA TAG AAC ATA CTC CCC AAT

T-MGB-39 (MGB, minor groove binder; FAM, carboxyfluorescein;

TAMRA, carboxytetramethylrhodamine).

Cell culture and preparation of protein extracts
MCF7 human breast adenocarcinoma cells were maintained at

37uC and 5% CO2 in Dulbecco’s Modified Eagles Medium

(DMEM; Gibco, Invitrogen, DMEM-GlutaMAX), supplemented

with 10% foetal bovine Serum (Sigma), 1% Non Essential Amino

Acids (Gibco, Invitrogen) and penicillin/streptomycin (Invitrogen;

100U/500ml media). Cells were treated with Dimethyl sulphoxide

(DMSO, Sigma) (negative control), DMSO + sodium selenite

(7 ng/ml; 40 nM, Sigma) (corresponding to Se-adequate condi-

tions and referred as Se-supplemented in the text by contrast with

the DMEM medium which is poor in Se), b-estradiol (10nM

prepared in DMSO), or a combination of 40 nM sodium selenite

and 10 nM b-estradiol. After 48h treatment, cells were washed

twice in ice-cold PBS, lysed and scraped into130 ml of lysis buffer

(25mM HEPES buffer pH7.6, 3 mM MgCl2, 40 mM KCL, 5%

glycerol, 0.5% NP-40, 2 mM DTT) in the presence of a cocktail of

protease inhibitors (Roche). Cells were sonicated on ice 3 times for

20 sec (Soniprep 150, Sanyo), centrifuged for 5 mins at

13,000 rpm at 4uC and the supernatant collected. Protein

concentration was determined by Bradford assay (Sigma).

Sodium dodecyl sulphate (SDS)-polyacrylamide gel
electrophoresis and Western-blotting

Proteins (40 mg) were separated by electrophoresis on a 10%

SDS-polyacrylamide gel and electro-transferred onto a PVDF

membrane (Roche). Membranes were blocked overnight in PBS

containing 0.05% Tween 20 and 5% dried skimmed milk at 4uC
and then incubated at room temperature for 1 h with polyclonal

anti-polyclonal GPx1 antibody at a 1:500 dilution in PBS

containing 0.05% Tween 20 and 5% dried skimmed milk (Abcam)

or with anti-b-actin (1:5,000 dilution, Sigma). Membranes were

then washed 5 times in PBS-0.05% Tween 20, and incubated for

1 h with HRP-conjugated secondary antibodies, either anti-rabbit

antibody (1:5000 dilution, Sigma) for anti-GPx1 or anti-mouse

(1:5000 dilution, Sigma) for anti-b-actin. After a further 5 washes

of the membranes, immuno-detection was carried out using a

chemiluminescence kit (GE Healthcare) on Amersham Hyper-

filmTM ECL (GE Healthcare). Band intensity was quantified

using UVIband software (Uvitec, UK).

Statistical analysis
To estimate the association between individual SNPs and breast

cancer, we calculated odds ratios (OR) and 95% confidence

intervals (95% CI) using conditional logistic regression analysis and

STATA 11.0 statistical software. Estimates were adjusted for age,

body mass index (BMI), smoking, fruit and vegetable intake,

alcohol and tobacco consumption, HRT use, number and year of

childbirths and Se intake estimated from a food frequency

questionnaire. Genotypes were evaluated using indicator variables

with the common homozygote as reference. Two models were

tested: a recessive model, in which each genotype was compared

with the homozygote for the frequent allele to assess the effect of

each genotype on the risk of breast cancer and a dominant model

in which heterozygotes and homozygotes for the rare allele were

pooled together and compared with the homozygote for the

frequent allele to assess the effect of the presence of at least one

rare allele on breast cancer risk. Conditional logistic regression of

two-loci interaction was performed for selected SNPs when either

(i) the SNPs showed a main effect or (ii) multivariate conditional

logistic regression suggested an interaction and when in addition,

the likelihood ratio test showed significant interactions (P#0.05).

ORs and 95% CI are presented with reference to the double

homozygous genotype for the most frequent allele.

Table 2. Effect of selenoprotein SNPs on breast cancer risk.

GENE
(polymorphism) Genotype

Cases/
Controls

OR
(95% CI) p-value

SOD2
(rs4880)

Total 939/958

CC 226/227 1 [-]

CT 485/494 1.09 [0.83–1.45] 0.53

TT 228/237 0.96 [0.69–1.34] 0.813

CT+TT 713/731 1.05 [0.8–1.38] 0.701

GPX1
(rs1050450)

Total 933/959

CC 465/503 1 [-]

CT 396/370 1.03 [0.81–1.32] 0.789

TT 72/86 0.83 [0.54–1.28] 0.393

CT+TT 468/456 0.99 [0.79–1.25] 0.96

GPX4
(rs713041)

Total 939/960

CC 319/335 1 [-]

CT 438/430 1.16 [0.9–1.49] 0.241

TT 182/195 0.92 [0.66–1.28] 0.63

CT+TT 620/625 1.09 [0.86–1.38] 0.459

SEPP1
(rs3877899)

Total 937/959

GG 586/594 1 [-]

GA 321/317 1 [0.78–1.28] 0.984

AA 30/48 0.39 [0.2–0.75] 0.005

GA+AA 351/365 0.91 [0.72–1.15] 0.436

SEPP1
(rs7579)

Total 937/957

GG 455/436 1 [-]

GA 396/420 0.86 [0.68–1.09] 0.206

AA 86/101 0.75 [0.5–1.13] 0.163

GA+AA 482/521 0.84 [0.67–1.05] 0.125

Adjusted values were analysed by conditional logistic regression. Odd ratios
(95% confidence interval) and p-values are presented together with the number
of cases and controls for each genotype. Significant results are presented in
bold and italic.
doi:10.1371/journal.pone.0073316.t002
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Results

Genotype, tumour classification and disease risk
The overall study population included 975 cases and 975

controls matched for age and hormone replacement therapy

(HRT). Baseline characteristics of women diagnosed with breast

cancer and their matched controls are presented in Table 1 (means

and 95% confidence interval) and findings regarding all the

included risk factors have been reported previously [32,33,34].

Genotype frequencies for rs4880 (SOD2), rs7579 and rs3877899

(SEPP1), rs713041 (GPX4) and rs1050450 (GPX1) are shown in

Table 2. With the exception of rs713041, the genotype distribu-

tions of the studied polymorphisms were in Hardy-Weinberg

equilibrium (HWE) among the controls. The failure of rs713041 to

conform to HWE may reflects the fact that controls were matched

for secondary criteria including HRT and thus do not represent

the general population [39]. To address the hypothesis that known

functional variants in selenoprotein genes affect BC risk and

tumour grade or histology the association of the individual SNPs

with BC risk was assessed by conditional logistic regression using

recessive and dominant models and adjusted as described in the

method section. Genotype for SEPP1 Ala234Thr (rs3877899) was

significantly associated with risk of breast cancer with the

homozygous AA genotype (Thr/Thr) having a lower risk of breast

cancer (OR 0.39, 95%CI 0.2–0.75, p = 0.005, Table 2).

BC cases were classified as having either ductal tumours (659)

with 267 being grade 1, 265 grade 2 and 127 grade 3 or non-

ductal tumours (190 cases); 126 cases had no tumour classification

at the time of follow up. Stratifying the genotyping data according

to these diagnostic criteria allowed analysis of the association of

genotype with risk of particular tumour grade or histology

(Table 3). Rs3877899 (SEPP1) was associated with risk of ductal

tumours with homozygous AA having a lower disease risk (OR

0.48, 95% CI 0.26–0.88, p = 0.017). In contrast, rs3877899 was

not associated with risk of a non-ductal tumour; however, women

homozygous TT for rs1050450 (GPX1, Leu variant) had an

increased risk of having a non-ductal tumour (1.88 [1.08–3.28],

p = 0.027) but it should be noted that there were few individuals

with this genotype. In addition, Leu carriers (rs1050450, GPX1)

had an increased risk of having a grade 3 ductal tumour compared

with grade 1 and 2 (OR 2.64, 95%CI 1.13–6.16 p = 0.025). None

of the other SNPs were associated with BC or BC subtypes.

Selenoprotein P supplies Se to non-hepatic tissues [40] to

support synthesis of other selenoproteins and therefore we tested

Figure 2. Model of the regulation of GPx1 in breast cells by selenium and estrogens. Our hypothesis is that GPx1 concentration in breast
cells is controlled by (i) factors that affect Se bioavailability (Se supply and polymorphisms in SEPP1) or the selenoprotein hierarchy (e.g. rs713041 in
GPX4), (ii) estrogen levels and estrogen receptor status of breast tumour cells, (iii) the Pro198Leu polymorphism (rs1050450) in GPX1. Combinations of
these factors contributing to low GPx1 activity/levels will result in lower capacity to respond to reactive oxygen species (ROS), favouring
accumulation of oxidative damage and promoting tumour progression. In contrast maintaining high GPx1 activity has the potential to delay tumour
progression.
doi:10.1371/journal.pone.0073316.g002

Selenoprotein SNPs,GPx1 Activity and Breast Cancer
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the hypothesis that SEPP1 variants interacted with SNPs in other

selenoprotein genes to modify BC risk by first carrying out a

multivariate logistic regression including all 5 SNPs. Using a

dominant model stratification of the genotyping data according to

tumour grade or histology revealed an interaction between

rs3877899 (SEPP1) and rs1050450 (GPX1), with women who were

heterozygous for both rs1050450 (CT) and rs3877899 (GA) being

at increased risk of developing non-ductal breast cancer

(OR = 2.94, 95%CI 1.35–6.37, p = 0.006, Table 4). Similar results

were obtained using a dominant model, with women carrying both

rs1050450 (CT+ TT) and rs3877899 (GA +AA) having an

increased risk of developing non-ductal breast cancer

(OR = 2.59, 95%CI = 1.28–5.22, p = 0.008, Table 4). In addition,

we observed a genetic interaction between rs1050450 (GPX1) and

rs7579 (SEPP1), with carriers of both rs1050450 (CT+TT) and

rs7579 (GA+AA) genotype having an increased risk of a grade 3

tumour compared with grades 1 and 2 (OR = 2.63,

95%CI = 1.63–6.71, p = 0.042, Table 4), indicating that the

association of rs1050450 genotype with the risk of grade 3 tumour

was modified by genotype for rs7579 in SEPP1. Although carriage

of only one copy of the Leu allele (GPX1) showed no statistical

effect on disease risk, the influence of heterozygosity for rs1050450

was modified by both SEPP1 SNPs, with heterozygosity for both

rs1050450 and rs3877899 increasing the risk (OR = 3.36, 95%CI

1.43–7.94, p = 0.006, Table 4) but heterozygosity for both

rs1050450 and rs7579 reducing the risk (OR = 0.34, CI 0.15–

0.77, p = 0.01, Table 4). It was not possible to analyse effects of

interactions of these other variants with being homozygous for the

Leu allele of rs1050450 because of the small numbers of

individuals with those combined genotypes. However, taken

together the observation that being homozygous for the

rs1050450 Leu allele significantly increases risk of a non-ductal

tumour combined with the significant effects of heterozygosity for

rs1050450 and rs3877899 on risk of the same diagnosis indicates

that carriage of at least a minor Leu allele is associated with

increased risk of such a tumour.

Table 3. Effect of selenoprotein SNPs on breast cancer risk after stratification of data according to tumourgrade and histology.

Ductal vs control Non-ductal vs control

GENE (polymorphism) Genotype OR (95% CI) p-value OR (95% CI) p-value

SOD2 (rs4880) CC 1[-] 1[-]

CT 0.98 [0.74–1.29] 0.88 1.13 [0.72–1.77] 0.604

TT 0.99 [0.72–1.36] 0.937 1.18 [0.7–1.99] 0.525

GPX1 (rs1050450) CC 1[-] 1[-]

CT 1.16 [0.92–1.47] 0.206 1.13 [0.77–1.66] 0.545

TT 0.73 [0.47–1.14] 0.166 1.88 [1.08–3.28] 0.027

GPX4 (rs713041) CC 1[-] 1[-]

CT 1.16 [0.9–1.5] 0.237 1.02 [0.68–1.52] 0.935

TT 0.91 [0.66–1.25] 0.552 1.03 [0.63–1.67] 0.911

SEPP1 (rs3877899) GG 1[-] 1[-]

GA 0.98 [0.77–1.24] 0.849 0.92 [0.62–1.35] 0.656

AA 0.48 [0.26–0.88] 0.017 0.89 [0.4–1.99] 0.785

SEPP1 (rs7579) GG 1[-] 1[-]

GA 0.91 [0.72–1.15] 0.42 1.17 [0.81–1.69] 0.404

AA 0.86 [0.58–1.28] 0.454 0.65 [0.32–1.33] 0.235

Adjusted values were analysed by conditional logistic regression. Odd ratios (95% confidence interval) and p-values are presented for each genotype. Significant results
are presented in bold and italic.
doi:10.1371/journal.pone.0073316.t003

Table 4. Significant SNP-SNP interactions in relation to breast cancer risk and tumour grades.

SNP-SNP interaction
Genotype
combination

Compared
groups OR [95% CI]

p-
value

rs1050450 (GPX1) *rs7579 (SEPP1) (CT+TT) * (GA+AA) ductal grade 3 (43/39)/ductal grade 1 &2(127/154) 2.63 [1.63–6.71] 0.042

rs1050450 (GPX1) * rs38773899 (SEPP1) (CT) * (GA) non-ductal (31/63)/ductal(91/193) 2.94 [1.35–6.37] 0.006

rs1050450 (GPX1) * rs38773899 (SEPP1) (CT+ TT) * (GA +AA) non-ductal(42/63)/ductal(110/193) 2.59 [1.28–5.22] 0.008

rs1050450 (GPX1) * rs38773899 (SEPP1) (CT)*(GA) non-ductal(31/63)/control (166/306) 3.36 [1.43–7.94] 0.006

rs1050450 (GPX1) * rs38773899 (SEPP1) (CT+TT)*(GA+AA) non-ductal (42/63)/control (121/306) 2.77[1.37–6.2] 0.006

rs1050450 (GPX1) * rs7579 (SEPP1) (CT)*(GA) non-ductal (23/35)/control(172/231) 0.34 [0.15–0.77] 0.01

Only significant interactions between two loci, as identified by logistic regression, are presented. Loci are identified by rs number and OR values with 95% CI are shown
as well as p-values. Compared group are indicated with the ratio corresponding to the number of women with the combined genotypes as indicated in the adjacent left
column/number of women double homozygous for the reference most frequent allele.
doi:10.1371/journal.pone.0073316.t004
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Genotype, GPx activity and disease risk
Erythrocyte GPx activity (eGPx), which largely reflects GPx1

expression, is influenced by rs1050450 (GPX1) genotype [41,42].

Pre-diagnostic eGPX activity was available for 377 matched pairs

in the study population and since selenoproteins essentially

compete for available Se during synthesis, we tested the hypothesis

that SNPs in other selenoprotein genes modulate eGPx activity.

Univariate analysis revealed a main effect of rs713041 in GPX4 on

eGPx activity (p = 0.015), with CC carriers having lower activity

than CT or TT carriers (Figure 1A). In addition, TT carriers for

rs713041 who later develop BC exhibited a significantly lower

eGPx compared with the ones who did not develop the disease

(p,0.001). This effect did not reflect a difference between controls

and cases in eGPx activity (data not shown, p = 0.257). These

effects of the GPX4 variant on eGPx activity are compatible with

previous work showing that rs713041 affects blood cell GPx1

protein levels, probably by affecting the ability of the GPX4 mRNA

to compete in the selenoprotein synthesis hierarchy [19].

In addition, current HRT users at the time of eGPx

measurement exhibited higher activity than women who had

either never or previously used HRT (ANOVA, main effect HRT

p = 0.001, Figure 1B) independently of the BC status. However

when genotype for rs1050450 was taken into account, we observed

a main effect of HRT (ANOVA, p = 0.004) and of rs1050450

(ANOVA, p = 0.001) in the prediction of eGPx activity level.

Current HRT users (both cases and controls) who were Pro or

Pro/Leu carriers showed higher eGPx activity compared with

never or former HRT users (Figure 1C). On the contrary, eGPx

activity was increased in homozygous Leu carrier controls who

were current HRT users but not among Leu carriers who at a later

stage in their life developed breast cancer (p = 0.045; Figure 1C).

The observed effects of HRT on eGPx activity suggested that

GPx1 expression is regulated by estrogen. To test this hypothesis,

MCF7 cells were treated with 10 nM b-estradiol for 48 h in the

presence or absence of sodium selenite (40 nM) and GPx1 protein

level (relative to b-actin control) assessed by western-blot analysis

(Figure 1D). GPx1 protein levels were very low in cells grown in

standard medium but supplementation with sodium selenite

resulted in a 1.98 (60.82) fold increase of GPx1 protein after

48h. b-estradiol treatment resulted in a larger increase of GPx1

protein level (5.33 (60.83) fold) and this effect was additive in the

presence of the combination b-estradiol and sodium selenite (7.84

(60.85) fold).

Discussion

The aetiology of breast cancer is only partially understood but

oxidative stress-induced DNA damage has been suggested to be

critical for the initiation and progression of the disease [5,43].

Several selenoproteins are known to have antioxidant functions

[11] and the present work provides evidence that genetic variants

in SEPP1 and GPX1 affect BC risk.

A dramatic 60% decrease in risk of developing total or ductal

BC was observed in homozygous Thr carriers for rs3877899

(SEPP1) compared with Ala carriers. Since there was no observed

effect of this variant on risk of a non-ductal tumour it is likely that

the decreased risk of developing total BC due to this SNP is largely

due to an effect on developing a ductal tumour. To our knowledge,

this is the first evidence that this SNP influences BC risk. SePP has

a major role in Se transport [40] and previous data have indicated

that both rs3877899 and rs7579 in SEPP1 modulate selenoprotein

concentrations and activities in the plasma, erythrocytes and

lymphocytes and plasma SePP isoform pattern [21,22], suggesting

that these polymorphisms can affect Se delivery to tissues. The

effects of genotype for rs3877899 (SEPP1) on BC risk suggest that

altered Se supply to the breast tissue could contribute to BC

development, potentially by affecting local expression of other

selenoproteins.

Leu carriers for rs1050450 (Pro198Leu) in GPX1 were shown to

have a 1.9-fold increased risk of developing non-ductal breast

cancer. In addition, carriers of this variant were also 2.6 fold more

likely to have a grade 3 ductal tumour compared to a grade 1 or 2

tumour. Since enzymatic assays have previously shown that the

Leu protein variant is less active than the Pro counterpart [16,17]

we propose that high GPx1 activity is required to counterbalance

the levels of ROS and related damage occurring during initiation

or progression of the disease (Figure 2).

Although a meta-analysis [44] indicated an association between

BC risk and genotype for Pro198Leu (GPX1) in premenopausal

women, a genome-wide association study (GWAs) approach failed

to find any statistically significant associations for either rs1050450

(GPX1) or rs4880 (SOD2) [44,45,46]. In addition, in the GWAs

rs3877899 (SEPP1) was not identified as being associated with BC

risk, nor was it apparently linked to SNPs showing an association

[46]. It is not clear why the present analysis revealed effects that

were not observed from this GWAs carried out on a US

population [44,45,46] but since generally Se intake is higher in

US than in Europe [47] it is possible that effects of genotype for

rs1050450 (GPX1) were revealed in the Danish cohort because of a

lower, sub-optimal, Se intake. An estimate of Se intake was

calculated on the basis of food questionnaires [48] for the present

cohort (67.8 mg/day [65.3–70.3] in controls and 65.1 mg/day

[63.1–67.2] in cases, Table 1) and indeed this suggests that their Se

intake is lower than that found in the US (.100 mg/day). Thus, it

is possible that the observed effects of the variants are particularly

relevant to populations where Se intake in low. Interestingly, a

GWAs carried out in UK identified a locus located close to the

SEPP1 gene to be associated with BC risk [49] but it is not known

if it is linked to either rs3877899 or rs7579. In addition, the present

study population was well characterised in terms of disease stage

and HRT, and this may reduce confounding of genetic effects by

such factors. Finally, alcohol intake is generally high amongst

Danish women and this may modify the association of BC with

SNPs in antioxidant enzymes, as observed previously [7,8,9,10].

The mean alcohol intake in the present study (estimated from food

frequency questionnaires) was 14.1 [12.8–15.5] g/day for controls

and 15.3 [13.7–16.9] g/day for cases respectively (Table 1),

considerably higher than reported intakes of 5–6 g/day or lower

in the US [50].

Interestingly, rs3877899 (SEPP1) genotype has previously been

found to be associated with risk of prostate cancer, another

hormone-dependent cancer [23]. Although the strongest and most

robust risk factors for BC are increased female hormone levels

[31,51], the roles of hormones in BC aetiology are complex; on

one hand the production of ROS through redox cycling of the

catechol estrogens has been suggested to contribute to breast

carcinogenesis by increasing DNA damage, and on the other

hand, estrogens have been shown to upregulate antioxidant

enzymes (MnSOD and glutathione peroxidases) via the NFkB

pathway in animal models [52,53,54]. Notably blood Se levels

vary through the menstrual cycle with the highest levels coinciding

with the peak of estrogen levels [55]. Since SePP1 accounts for the

majority of blood Se this suggests that SePP1 levels, and thus Se

supply, may respond to estrogen.

eGPx activity has been reported previously to be greater in

controls than in breast cancer cases [10]. In the additional work

presented here on the same data a more complex relationship

between genotype for rs1050450 (GPX1), eGPx activity, HRT use
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and BC risk was revealed. eGPx activity was higher in women

currently using HRT compared with former/never users of HRT,

suggesting that HRT use raised eGPX activity. This hypothesis is

supported by the effect of b-estradiol in increasing both GPx1

protein levels (Figure 1D) and GPx activity in MCF7 cells [43].

The present results indicate that both Se supply and b-estradiol

regulate breast cell eGPx activity. In addition, a lower eGPx

activity in BC cases compared with controls was only found in

homozygous Leu carriers who were current HRT users, suggesting

that HRT failed to stimulate an increase in eGPx activity in

women who later developed cancer. This could indicate that either

1) low GPx activity predisposes these women to oxidative damage

and cancer development, 2) these women require more Se to raise

their GPx activity to respond to HRT or 3) Se is diverted towards

other tissues (e.g. breast) as an early sign of oxidative stress. The

latter explanation is compatible with the observation that estradiol

affects Sepp1 and GPx1 mRNA expression and Se tissue

distribution in ovarectomized female rats [56].

eGPx activity corresponds mainly to GPx1 activity. Baseline

measurements of eGPx activity revealed that rs713041(GPX4) also

associates with eGPx activity and is compatible with findings that

rs713041 affects both the response of lymphocyte GPx1 levels to

Se supplementation and the relative binding of proteins to the

GPX1 and GPX4 39UTR [19]. Since protein binding to the SECIS

element within the 39UTR is critical to controlling the relative

synthesis of different selenoproteins [18], the present results

suggest that women with CC genotype for rs713041 channel Se

towards GPx4 synthesis and lowers Se availability for GPx1

synthesis; in contrast, for CT and TT carriers GPx4 competes less

for Se and more Se is therefore available for GPx1 synthesis.

Overall, the data suggest a model of GPx1 regulation in which

breast GPX1 expression depends on the combination of dietary Se

intake, delivery/distribution of Se (influenced by SNPs in SEPP1),

factors altering the selenoprotein hierarchy (e.g. SNP in GPX4

gene), and hormonal regulation of GPx1 expression. The effect on

GPx1 expression is further modulated by the presence of the

Pro198Leu SNP (rs1050450) altering enzyme activity. We

hypothesise that the capacity of an individual to deliver Se to

the breast tissue and generate high or low GPx1 activity ultimately

determines the susceptibility of their breast tissue to oxidative

damage and carcinogenesis. The data indicate that individuals

who carry the Leu allele and who have low eGPx activity when

using HRT are at increased risk of subsequently developing BC

(Figure 2).

Our results suggest that there is a complex interplay between

estrogen and Se-dependent antioxidant activity which may play a

role in breast carcinogenesis. Genotype for both rs1050450 (GPX1)

and rs3877899 (SEPP1) were found to modulate BC risk and grade

in a Danish cohort in which Se intake was previously estimated to

be low [42]. Previously genotype for rs713041 (GPX4) has been

reported to be associated with prognosis after diagnosis of breast

cancer [26]. The present data show that rs713041 also modulates

eGPx activity, with TT carriers who later develop BC exhibiting a

significantly lower eGPx compared with the ones who did not

develop the disease. Thus, we propose that genotypes for both

rs713041 (GPX4) and rs1050450 (GPX1) influence breast GPx1

activity and that this impinges on BC risk and grade. In

conclusion, the our data provide evidence that SNPs in SEPP1

and GPX1 modulate risk of BC and that eGPx activity is modified

by SNPs in SEPP1, GPX4 and GPX1 and by estrogens, thus

suggesting a role of selenoproteins in BC development. Although

earlier work has suggested that antioxidant enzyme SNP genotypes

are not useful in screening for human disease [57], the present

findings lead us to speculate that the combination of selenoprotein

genotype and eGPx activity may be a useful biomarker of BC risk

in populations where Se intake is relatively low, for example as has

been found in European populations [47].
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