62 research outputs found

    Towards a harmonization of distributed trait datasets

    Get PDF
    Trait-based research spans from evolutionary studies of individual-level properties to global patterns of biodiversity and ecosystem functioning. An increasing number of trait data is available for many different organism groups, being published as open access data on a variety of file hosting services. Thus, standardization between datasets is generally lacking due to heterogeneous data formats and types. The compilation of these published data into centralised databases remains a difficult and time-consuming task. We reviewed existing trait databases and online services, as well as initiatives for trait data standardization. Together with data providers and users we identified a need for a minimal trait-data terminology that is flexible enough to include traits from all types of organisms but simple enough to be adopted by different research communities. In order to facilitate reproducibility of analyses, the reuse of data and the combination of datasets from multiple sources, we propose a standardized vocabulary for trait data that is compatible with existing ontologies. We tested the vocabulary using trait datasets from several research groups working on different taxa and questions in a large project (the Biodiversity Exploratories, www.biodiversity-exploratories.de). By relying on unambiguous identifiers, the proposed minimal vocabulary for trait data captures the different degrees of resolution and measurement detail for multiple use cases of trait-based research. It further encourages the use of global Uniform Resource Identifiers (URI) for taxa and trait definitions, methods and units, thereby following the standards for a semantic web of scientific data. In addition, we developed an R-based tool to convert any trait dataset into the proposed standard format. The R-package facilitates the upload of own data to hosting services but also simplifies the access to published trait data. It also offers direct access to trait datasets that have been published in the public domain or under creative commons licenses. All these products are available through the Github platform (https://github.com/EcologicalTraitData) with the aim of a continuous collaboration and improvement with the research community. KEYWORDS: traits, standardization, ontology, semantic web, tools, distributed data, R package, Biodiversity Exploratorie

    Insights from regional and short-term biodiversity monitoring datasets are valuable: a reply to Daskalova et al. 2021

    Full text link
    Reports of major losses in insect biodiversity have stimulated an increasing interest in temporal population changes. Existing datasets are often limited to a small number of study sites, few points in time, a narrow range of land-use intensities and only some taxonomic groups, or they lack standardised sampling. While new monitoring programs have been initiated, they still cover rather short time periods. Daskalova et al. 2021 (Insect Conservation and Diversity, 14, 1-18) argue that temporal trends of insect populations derived from short time series are biased towards extreme trends, while their own analysis of an assembly of shorter- and longer-term time series does not support an overall insect decline. With respect to the results of Seibold et al. 2019 (Nature, 574, 671–674) based on a 10-year multi-site time series, they claim that the analysis suffers from not accounting for temporal pseudoreplication. Here, we explain why the criticism of missing statistical rigour in the analysis of Seibold et al. (2019) is not warranted. Models that include ‘year’ as random effect, as suggested by Daskalova et al. (2021), fail to detect non-linear trends and assume that consecutive years are independent samples which is questionable for insect time-series data. We agree with Daskalova et al. (2021) that the assembly and analysis of larger datasets is urgently needed, but it will take time until such datasets are available. Thus, short-term datasets are highly valuable, should be extended and analysed continually to provide a more detailed understanding of insect population changes under the influence of global change, and to trigger immediate conservation actions

    Open Science Principles for Accelerating Trait-Based Science Across the Tree of Life

    Get PDF
    Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms. Trait science needs a vision for achieving global integration across all organisms. Here, we outline how the adoption of key Open Science principles—open data, open source and open methods—is transforming trait science, increasing transparency, democratizing access and accelerating global synthesis. To enhance widespread adoption of these principles, we introduce the Open Traits Network (OTN), a global, decentralized community welcoming all researchers and institutions pursuing the collaborative goal of standardizing and integrating trait data across organisms. We demonstrate how adherence to Open Science principles is key to the OTN community and outline five activities that can accelerate the synthesis of trait data across the Tree of Life, thereby facilitating rapid advances to address scientific inquiries and environmental issues. Lessons learned along the path to a global synthesis of trait data will provide a framework for addressing similarly complex data science and informatics challenges

    Nutrient stoichiometry and land use rather than species richness determine plant functional diversity

    Get PDF
    Ajuts: Deutsche Forschungsgemeinschaft. Grant Numbers: FI 1246/6-1, HO 3830/2-1, KL 2265/5-1 - TRY initiative on plant traits DIVERSITAS/Future Earth and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig - Open Access Publication Fund of University of Muenster.Plant functional traits reflect individual and community ecological strategies. They allow the detection of directional changes in community dynamics and ecosystemic processes, being an additional tool to assess biodiversity than species richness. Analysis of functional patterns in plant communities provides mechanistic insight into biodiversity alterations due to anthropogenic activity. Although studies have consi-dered of either anthropogenic management or nutrient availability on functional traits in temperate grasslands, studies combining effects of both drivers are scarce. Here, we assessed the impacts of management intensity (fertilization, mowing, grazing), nutrient stoichiometry (C, N, P, K), and vegetation composition on community-weighted means (CWMs) and functional diversity (Rao's Q) from seven plant traits in 150 grasslands in three regions in Germany, using data of 6 years. Land use and nutrient stoichiometry accounted for larger proportions of model variance of CWM and Rao's Q than species richness and productivity. Grazing affected all analyzed trait groups; fertilization and mowing only impacted generative traits. Grazing was clearly associated with nutrient retention strategies, that is, investing in durable structures and production of fewer, less variable seed. Phenological variability was increased. Fertilization and mowing decreased seed number/mass variability, indicating competition-related effects. Impacts of nutrient stoichiometry on trait syndromes varied. Nutrient limitation (large N:P, C:N ratios) promoted species with conservative strategies, that is, investment in durable plant structures rather than fast growth, fewer seed, and delayed flowering onset. In contrast to seed mass, leaf-economics variability was reduced under P shortage. Species diversity was positively associated with the variability of generative traits. Synthesis. Here, land use, nutrient availability, species richness, and plant functional strategies have been shown to interact complexly, driving community composition, and vegetation responses to management intensity. We suggest that deeper understanding of underlying mechanisms shaping community assembly and biodiversity will require analyzing all these parameters

    Towards an Ecological Trait-data Standard

    Get PDF
    Trait-based approaches are widespread throughout ecological research, offering great potential for trait data to deliver general and mechanistic conclusions. Accordingly, a wealth of trait data is available for many organism groups, but, due to a lack of standardisation, these data come in heterogeneous formats. We review current initiatives and infrastructures for standardising trait data and discuss the importance of standardisation for trait data hosted in distributed open-access repositories. In order to facilitate the standardisation and harmonisation of distributed trait datasets, we propose a general and simple vocabulary as well as a simple data structure for storing and sharing ecological trait data. Additionally, we provide an R-package that enables the transformation of any tabular dataset into the proposed format. This also allows trait datasets from heterogeneous sources to be harmonised and merged, thus facilitating data compilation for any particular research focus. With these decentralised tools for trait-data harmonisation, we intend to facilitate the exchange and analysis of trait data within ecological research and enable global syntheses of traits across a wide range of taxa and ecosystems

    Fonctionnement de la biodiversité en ville : contribution des dépendances vertes ferroviaires

    No full text
    Understanding the functioning and the importance of biodiversity in urban areas is essential in an era when more than half of all humans live in cities. The goal of this thesis was to understand biodiversity dynamics in cities through the study of interactions between urban areas and railway edges. Firstly, we studied the effects of urbanisation on railway edges plant and animal (Orthoptera, snails) communities with both a taxonomic and a functional approach. Secondly, we examined the contribution of railway edges to the dynamics of biodiversity in a urban context.Our results highlight the importance of filters induced by fragmentation and urban environments on community assembly. Those filters operate a selection of species biological traits, resulting in a non-random simplification of local community compositions. Our studies also emphasize the role of railway edges as refuges and show that these areas can provide a functional connectivity in urban areas, which contribute to the attenuation of the effects of fragmentation and isolation induced by urbanisation. Despite this connectivity function, railway edges did not seem to favour invasions by plant species, which seem much more related to train movement. A connectivity improvement, an integrated management and a monitoring of actions in space and time should benefit to railway edges biodiversity in a urban context. This thesis sheds a new light on areas such as railway edges in cities and their importance to biodiversity. The next step is then to understand the importance of these areas and the biodiversity they host to city-dwellers.La compréhension du fonctionnement et de l’intérêt de la biodiversité en milieu urbain est fondamentale à l’ère où les villes sont devenues les lieux de vie pour plus de la moitié des humains de la planète. L’objectif de cette thèse était de mieux comprendre le fonctionnement de la biodiversité en ville à travers l’étude des interactions ayant lieu entre le milieu urbain et les dépendances vertes ferroviaires. Nous avons donc en premier lieu étudié les effets de l’urbanisation sur la diversité taxonomique et fonctionnelle des communautés végétales et animales (orthoptères, escargots) des dépendances vertes. Nous avons ensuite étudié l’apport de ces dépendances vertes ferroviaires au fonctionnement de la biodiversité en ville.Nos résultats soulignent l’importance des filtres liés à la fragmentation et à l’environnement urbain dans l’assemblage des communautés. Ces filtres conduisent à la sélection de certains traits fonctionnels et certaines espèces « gagnantes », ce qui se traduit par une simplification non aléatoire des communautés en ville. Nous avons également mis en évidence un rôle de refuge ainsi qu’une connectivité fonctionnelle au sein des dépendances vertes ferroviaires en milieu urbain. Cette dernière participe à atténuer les effets des filtres liés à la fragmentation sur les communautés végétales mais ne semble pas pour autant favoriser les invasions végétales, qui seraient plutôt liées au déplacement de graines associé au mouvement des trains. Enfin, maintenir ou favoriser la biodiversité au sein des dépendances vertes ferroviaires en ville passe par une amélioration de la connectivité ainsi que par une gestion raisonnée et le suivi des actions menées dans l’espace et dans le temps. Cette thèse apporte un éclairage nouveau sur des espaces comme les dépendances vertes ferroviaires en ville en montrant leur importance pour la biodiversité. La compréhension de l’importance de ces espaces et de leur biodiversité pour les citadins devra être la prochaine étape

    Biotic interactions outweigh abiotic factors as drivers of bark microbial communities in Central European forests.

    Get PDF
    Bark surfaces are extensive areas within forest ecosystems, which provide an ideal habitat for microbial communities, through their longevity and seasonal stability. Here we provide a comprehensive account of the bark surface microbiome of living trees in Central European forests, and identify drivers of diversity and community composition. We examine algal, fungal, and bacterial communities and their interactions using metabarcoding on samples from over 750 trees collected in the Biodiversity Exploratories in northern, central, and southern Germany. We show that mutual biotic influence is more important than the abiotic environment with regard to community composition, whereas abiotic conditions and geography are more important for alpha diversity. Important abiotic factors are the relative humidity and light availability, which decrease the algal and bacterial alpha diversity but strongly increase fungal alpha diversity. In addition, temperature is important in shaping the microbial community, with higher temperature leading to homogeneous communities of dominant fungi, but high turnover in bacterial communities. Changes in the community dissimilarity of one organismal group occur in close relation to changes in the other two, suggesting that there are close interactions between the three major groups of the bark surface microbial communities, which may be linked to beneficial exchange. To understand the functioning of the forest microbiome as a whole, we need to further investigate the functionality of interactions within the bark surface microbiome and combine these results with findings from other forest habitats such as soil or canopy

    Predicting future invaders and future invasions

    Get PDF
    Invasive alien species are a great threat to biodiversity and human livelihoods worldwide. The most effective way to limit their impacts and costs is to prevent their introduction into new areas. Identifying invaders and invasions before their occurrence would arguably be the most efficient strategy. Here, we provide a profiling method to predict which species—with which particular ecological characteristics—will invade, and where they could invade. We illustrate our approach with ants, which are among the most detrimental invasive species, as they are responsible for declines of numerous taxa, are involved in local extinctions, disturb ecosystem functioning, and impact multiple human activities. Based on statistical profiling of 1,002 ant species from an extensive trait database, we identify 13 native ant species with an ecological profile that matches that of known invasive ants. Even though they are not currently described as such, these species are likely to become the next global invaders. We couple these predictions with species distribution models to identify the regions most at risk from the invasion of these species: Florida and Central America, Brazil, Central Africa and Madagascar, Southeast Asia, Papua New Guinea Northeast Australia, and many islands worldwide. This framework, applicable to any other taxa, represents a remarkable opportunity to implement timely and specifically shaped proactive management strategies against biological invasions
    corecore