
Received 15 December 2023. Revised: 18 January 2024 
© The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

ISME Communications, 2024, 4(1), ycae012

https://doi.org/10.1093/ismeco/ycae012
Advance access publication: 25 January 2024

Original Article

Biotic interactions outweigh abiotic factors as drivers of 
bark microbial communities in Central European forests 
Lukas Dreyling1,2, *, Caterina Penone3, Noëlle Valérie Schenk3, Imke Schmitt1,2, *, Francesco Dal Grande1,4,5 

1Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main 60325, Germany 
2Goethe University Frankfurt, Institute of Ecology, Evolution and Diversity, Frankfurt am Main 60438, Germany 
3Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland 
4Department of Biology, University of Padova, Padua 35122, Italy 
5National Biodiversity Future Center (NBFC), Palermo 90133, Italy 

*Corresponding authors: Lukas Dreyling, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, 
Germany. Email: lukas.dreyling@senckenberg.de and Imke Schmitt, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 
Frankfurt am Main, 60325, Germany. Email: imke.schmitt@senckenberg.de 

Abstract 
Bark surfaces are extensive areas within forest ecosystems, which provide an ideal habitat for microbial communities, through their 
longevity and seasonal stability. Here we provide a comprehensive account of the bark surface microbiome of living trees in Central 
European forests, and identify drivers of diversity and community composition. We examine algal, fungal, and bacterial communities 
and their interactions using metabarcoding on samples from over 750 trees collected in the Biodiversity Exploratories in northern, 
central, and southern Germany. We show that mutual biotic influence is more important than the abiotic environment with regard to 
community composition, whereas abiotic conditions and geography are more important for alpha diversity. Important abiotic factors 
are the relative humidity and light availability, which decrease the algal and bacterial alpha diversity but strongly increase fungal alpha 
diversity. In addition, temperature is important in shaping the microbial community, with higher temperature leading to homogeneous 
communities of dominant fungi, but high turnover in bacterial communities. Changes in the community dissimilarity of one organismal 
group occur in close relation to changes in the other two, suggesting that there are close interactions between the three major groups 
of the bark surface microbial communities, which may be linked to beneficial exchange. To understand the functioning of the forest 
microbiome as a whole, we need to further investigate the functionality of interactions within the bark surface microbiome and combine 
these results with findings from other forest habitats such as soil or canopy. 

Keywords: microbial ecology, microbiome, forest, algae, bacteria, fungi, bark surface, community ecology, metabarcoding, environmen-
tal DNA 

Introduction 
Forest ecosystems harbour a great diversity of microbial life in 
a variety of forest compartments, such as soil, dead wood, leaf 
surfaces, or bark surfaces [1]. Communities of microorganisms 
perform important functions in forests, including nutrient cycling 
and fixation, and symbiotic relationships with plants [2-4]. It is 
therefore crucial to understand the causes (and consequences) 
of microbial diversity changes in forests, i.e. understand their 
biotic and abiotic drivers. Ideally, we would know the complete 
microbial spectrum in all forest compartments, a task not nearly 
accomplished yet [1]. Here we contribute to closing this knowledge 
gap by focusing on a large but neglected forest compartment, the 
bark surface of living trees, and assessing the diversities, as well 
as biotic and abiotic drivers of bacterial, fungal, and algal bark 
surface communities. 

Bark surfaces constitute one of the largest forest compart-
ments [1]. They offer a multitude of micro niches for microbial 
colonization [5] and sustain diverse bacterial, fungal and algal 
communities [6-10] despite challenging environmental conditions 
such as low nutrient and water availability [6, 7, 11]. Microbial 

communities on bark are at the base of the forest food web, 
supporting animals, such as molluscs, mites, and lice [12-15] and  
macro-epiphytes such as mosses and lichens [16, 17]. According 
to Aschenbrenner et al. (2017) [16], these communities could also 
represent reservoirs of microbial taxa potentially “feeding” other 
forest compartments, e.g. via transmission by stemflow from the 
phyllosphere to soil [18]. 

Natural microbial communities engage in a wide variety of 
important interactions, ranging from the provision of nutrients 
[19] to parasitism [20]. Algae are primary producers, supplying 
these communities with photosynthetic products (e.g. [21]), but 
lack the ability to fix nitrogen, which, in turn, is often provided 
by mutualistic bacteria [22]. Other bacteria have been shown 
to be harmful to algae, e.g. by producing cell death inducing 
compounds [23, 24]. Fungi, on the other hand, are known to 
protect algae, for example from such harmful bacteria [24] but  
also from environmental stressors such as UV radiation [25]. They 
often provide a structural component for colonization through 
their filamentous nature, e.g. in lichens [26] or mycorrhiza [19]. In 
addition, the fungal mycelium has been proposed as a “transport
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path” for bacterial dispersal [27]. However, fungi and bacteria 
also engage in competition for nutrients [19]. Considering these 
types of interactions, it is highly likely that algae, fungi, and 
bacteria occurring in close spatial association on tree bark jointly 
influence each other’s diversity and community composition (e.g. 
[28]). 

Abiotic conditions, which affect aboveground microbial com-
munities of trees, have mostly been analysed with a focus on phyl-
losphere communities. For example, Liu et al. (2023) [29] found 
that lower biomass and species richness of phyllosphere algae in 
tropical forests is likely related to lower moisture retention on 
the leaf surface. Similar patterns can be observed for fungi and 
bacteria, e.g. in the phyllosphere of grapes, where the richness 
of fungi and bacteria increased with higher temperatures and 
rainfall [30]. Another important abiotic factor is exposure to UV 
radiation in aboveground habitats, which has been shown to alter 
bacterial community composition, but not population size, in the 
phyllosphere [31]. Based on these studies, we hypothesize that 
the bark surface microbiome, similarly to the phyllosphere, is 
affected by fluctuations in temperature, water availability, and UV 
radiation. For example, a previous study on bark microalgae from 
Mediterranean forests showed a higher abundance and diversity 
compared to those of temperate forests, likely due to differences 
in temperature and precipitation [32]. However, additional factors 
may contribute to shaping the unique communities on bark sur-
faces [7], for example, the age of the host tree [10, 33]. 

Interestingly, studies from soil microbial communities revealed 
that organismal groups occurring in the same habitat tend to 
exhibit different and sometimes opposite responses to abiotic 
changes. De Vries et al. [34] showed that bacterial networks are 
destabilized under drought conditions, while the effect on fungi 
was negligible. Even within organismal groups, responses can 
differ, as has been shown for drought responses of free living 
and mycorrhizal fungi [35]. To understand how abiotic conditions 
affect the microbiome, we thus need to include the full microbial 
spectrum captured at the same scales and time points. 

Only few studies about natural bark micro-communities exist 
(e.g. [7, 8, 35]), and although they often included only single organ-
ismal groups [16, 36, 37], we already know parts of the diversity in 
bark surface communities [10]. However, to gain insights into how 
the whole community of microorganisms responds to present 
environmental change, and to model future changes, we need a 
comprehensive overview of the drivers behind community struc-
ture [1, 10]. Since diversity is multifaceted we need to go beyond 
alpha diversity and consider multiple diversity dimensions [38] 
to fully understand which biotic and abiotic factors shape com-
munity responses. Additionally, rare and common species might 
respond differently to the same drivers [39] and beta diversity can 
reveal homogenisation patterns [40]. 

In this study, we aim to elucidate how the environment 
structures multi-kingdom micro-organismal communities in 
one of the largest above-ground habitats of the terrestrial 
realm, the bark surface of forest trees. We sampled micro-
communities from the bark of living trees, in 133 plots (over 750 
trees) along a south-west to north-east gradient across Germany 
and assessed the relative contribution of abiotic (e.g. climate 
and forest features) and biotic (i.e. co-occurrences) factors in 
predicting the metabarcoding-derived diversity of three major 
microbial domains, i.e. terrestrial green algae, fungi, and bacteria. 
Specifically, we aimed at answering the following questions: 

1) What is the alpha diversity and community composition 
associated with bark surfaces in Central European temperate 
forests? 

2) What are the drivers of alpha diversity and composition of 
the bark surface microbial community? And specifically, what is 
the relative importance of biotic and abiotic factors? 

Material and methods 
Study design 
We collected samples in May 2021 from the full set of 150 forest 
plots established by the Biodiversity Exploratories in three regions 
across Germany [41]. We defined a 20 m × 20 m subplot of the 
original 100 × 100 m2 plot and collected a composite sample of 
bark surface swabs from six trees per plot. Prior to sampling, 
we determined the most abundant tree species for each plot, 
based on a forest inventory [42]. All six trees sampled in each plot 
belonged to the predominant species. Some plots were excluded 
prior to the analysis, either because the dominant tree species did 
not occur in enough plots necessary for robust statistics, the plot 
was clear cut before sampling or because the extraction did not 
yield enough DNA. The dataset used for analysis contained 133 
plots of the original 150 sampling plots. The dominant tree species 
in the final subset of 133 plots were beech (Fagus sylvatica), pine 
(Pinus sylvestris), or spruce (Picea abies). Following a previous study 
[10], the composite sample included two small (5–15 cm diameter 
at 150 cm height), two medium (15–30 cm), and two large (> 30 cm) 
trees. When no equal sampling was possible, we chose the size 
class that best represented the surrounding forest (36 of 133 plots, 
∼27%). 

The sampling technique is described in detail in [10] with the  
only difference that all swabs from one plot were pooled together. 
In brief: we sampled the microbial community of the bark surface 
by swabbing with nylon-flocked swabs (FLOQSwabs™, Copan, 
Brescia, Italy) once around the stem at 150-cm height. The swabs 
were fixed in nucleic acid preservation (NAP) buffer [43] and  
stored at 4◦C until DNA extraction. We included three extraction 
blanks (one per region) of six swabs exposed to ambient air. These 
were processed as if they were a biological sample. 

DNA extraction 
As described in [44], samples stabilized in DNA preservation 
buffers need extra processing before extraction. To allow libera-
tion of all material, including bacterial cells, we added an equal 
amount of phosphate buffered saline to the tube containing the 
swabs in NAP buffer. Afterwards, we moved the contents to a 
50 ml tube (to allow movement) and vortexed the swabs for 30 s 
to dislodge material. We transferred 1.5 ml of the suspension to 
a 2 ml tube, centrifuged it at 6000× g for 15 min. and discarded 
the supernatant. We used an extraction kit (Quick-DNA Fecal/-
Soil Microbe Microprep, Zymo Research Europe GmbH, Freiburg, 
Germany). Modifying the protocol, we added the beads and buffer 
directly to the centrifugation pellet. Samples were shaken for a 
total of 6 min (SpeedMill PLUS, Analytik Jena, Jena, Germany). 
All subsequent steps followed the manufacturer’s protocol. DNA 
extracts were stored at −20◦C. 

PCR amplification and high-throughput 
sequencing 
We amplified algal, fungal, and bacterial DNA with universal 
primer pairs, targeting the ITS2 (ITS-Cha3 (CAACTCTCRRCAACG-
GATA) [45] and ITSu4 (RGTTTCTTTTCCTCCGCTTA) [45] for algae; 
FITS7 (GTGARTCATCGAATCTTTG) [46] and ITS 4 (TCCTCCGCT-
TATTGATATGC) [47] for fungi) and 16S V3-V4 (341F (CCTACGGG-
WGGCWGCAG) [48, 49] and 785R (GACTACHVGGGTATCTAATCC) 
[50] for bacteria) regions. We used double-index multiplexing
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Table 1. Cycling conditions for all three organismal groups. Differences are highlighted in bold. A = algae, F = fungi, B = bacteria. 

Phase Temperature (◦C) Duration (s) Number of cycles 

Initial denaturation 95 60 1 
Denaturation 95 15 A: 30 

F: 35 
B: 30 

Annealing A: 54, F: 56, B: 59 15 
Elongation 72 10 
Final extension 72 60 1 

with both primers being tagged by an octamer, allowing us 
to amplify all samples in triplicate. Each technical replicate 
included eight PCR negative controls as well as 23 empty wells 
as so-called “multiplex controls” to detect potential primer 
jump [ 51]. PCR reactions with a volume of 15 μl contained 
5 ng of DNA, 7.5 μl of MyTaqTM HS Mix, 2x (Bioline GmbH, 
Luckenwalde, Germany), 0.6 μl 10 mM of each primer, and 4.3 μl 
DNAse free water. All samples were randomly placed on two 96-
well plates, sharing the placement scheme between replicates. 
The cycling conditions differed between the organismal groups 
(Table 1). 

After PCR, we cleaned each sample with magnetic beads 
(MagSI-NGSPREP Plus, magtivio B.V., Geelen, Netherlands) and 
measured DNA concentration using the Qubit dsDNA HS assay 
with a Qubit 3.0 (Thermo Fisher Scientific, MA, USA). Triplicates 
were pooled equimolarly and sent to Fasteris SA (Plan-les-Ouates, 
Switzerland) for library preparation (MetaFast protocol) and 
sequencing. Amplicons were sequenced with 2 × 300 bp paired-
end reads on an Illumina MiSeq machine (Illumina Inc, San Diego, 
CA, USA). 

Bioinformatics 
We trimmed the primers and demultiplexed the reads using 
Cutadapt (version 3.3., [52]). We used DADA2 (version 1.12.1, [53]) 
for filtering and trimming, denoising and sample inference to 
obtain amplicon sequencing variants (ASVs). For fungi and bac-
teria, we used DADA2 assignTaxonomy() and the publicly avail-
able databases UNITE general fasta release 9.0 [54], including 
eukaryotic ITS as outgroups, and SILVA 138.1 SSU Ref NR 99 
[55]. For algae, no such database exists and we used the NCBI 
nt database (generated on 25 April 2022) with a local call to 
BLASTn. Afterwards we used the taxonomizr R package (version 
0.8.0, [56]) to assign taxonomy. BLAST hits from uncultured or 
environmental origin, and below 95% identity were excluded. 
Reads were checked for contaminant sequences using decontam 
(version 1.16.0, [57]). The resulting ASV table was curated with 
the LULU algorithm (version 0.1.0, [58]), which is a tool for post-
clustering curation based on co-occurrence of similar sequences 
and merges potential parent and child sequences. A table tracking 
the raw number of ASVs through the curation can be found in 
Supplementary Table 1. 

Analyses 
We used R (version 4.2.2, [59]) together with RStudio (version 
2022.12.0.353, [60]) to perform all the analyses. Data were com-
bined with phyloseq (version 1.40.0, [61]). All graphics were gen-
erated with ggplot2 (version 3.4.0, [62]) and ggpubr (version 0.5.0, 
[63]). To visualize community composition, we created relative 
abundance barplots of the 25 most abundant orders with the 
microbiome [64], fantaxtic [65], and microViz [66] packages. To avoid 
a loss of data, samples were not rarefied [67]. All analysis scripts 
are available at Zenodo [68] under doi: 10.5281/zenodo.10200121. 

Diversity 
In order to capture multiple dimensions of diversity, we calculated 
Hill numbers [69, 70] (or effective species (in this case, ASV) 
number) for both alpha and beta diversity using the hillR package 
(version 0.5.1, [71]). In general, the weight given to the abundance 
(counts) of a taxon increases with Hill number. According to the 
definition by Chao et al. (2014) [70], Hill numbers measure the 
diversity of “all” (q = 0), of “typical” (q = 1) and “dominant” (q = 2)  
species (ASVs). In the following sections we use these terms when 
referring to the according q values. 

We chose the first three levels of q = 0, 1, and  2  to  have  a  
direct comparison to widely used indices. For alpha diversity these 
correspond to species (ASV) richness (q = 0), Shannon entropy 
(q = 1), and inverse Simpson index (q = 2). Since beta diversity is 
inherently a comparison between two spatially separate popula-
tions [72] we calculated Sørensen-type similarity between pair-
wise communities as the CqN measure [73, 74]. To mirror the met-
rics used for alpha diversity, we calculated measures of Sørensen 
dissimilarity (q = 0), dissimilarity of the Horn index (q = 1), and 
dissimilarity of the Morisita–Horn index (q = 2).  

Environmental influence on diversity 
To assess the effect of the environment on the microbial bark 
communities we chose a set of explanatory variables, based on 
prior hypotheses of how they might influence the community. 
Table 2 gives an overview and explains what the variables rep-
resent and how they were measured. All variables were scaled to 
standardize effect sizes and make them comparable. An overview 
of estimates can be found in Supplementary Table 2. We tested for 
significant differences in the tree-dependent variables between 
the tree species using a multivariate analysis of variance. Based 
on the results (Pillais trace = 0.86, F = 19.33, P < 0.001) and bio-
logical interpretation, we hypothesize that the host tree species 
(where the sample was collected) and tree-dependent variables 
(see Table 2) represent the same processes. Thus, we excluded the 
host tree species from the analysis. A table giving an overview 
of the environmental conditions can be found in Supplementary 
Table 3. 

We used multiple linear regression models to study the 
responses of alpha diversity to abiotic and biotic factors. All 
models were specified as follows: 

lm(biotic Y ∼ region + relative humidity + temperature + average 
DBH + canopy openness 

+ gini coefficient + stand density + ratio of dominant trees 
+ forest area + biotic1 + biotic2 + offset(library size)). 

Where biotic 1 and 2 represent the alpha diversities of the 
two other groups (e.g. when bacteria are the response variable, 
fungi and algae are biotic 1 and 2). Biotic influences were always 
modelled on the same diversity level, e.g. the response of algal q0 
to changes in bacterial and fungal q0. The linear models included 
an offset term to account for the variation in library size between 
the samples.
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Table 3. Number of ASVs per organism group in total, and split by study region. 

Organism group Total # of ASVs Swabian Alb 
(south-west) 

Hainich-Dün 
(central) 

Schorfheide-Chorin 
(north-east) 

Algae 131 99 100 76 
Fungi 1750 1123 775 763 
Bacteria 1263 787 666 541 

To correct for multiple testing, we corrected the P-values for 
type 1 errors with a Benjamini–Hochberg correction and a thresh-
old of P < 0.2. Combining this relaxed threshold and correction 
allows us to detect effects on this unknown system we would 
otherwise miss while still being cautiously optimistic that the 
effect is not a false positive. 

To model changes in beta diversity we used Generalized Dis-
similarity Modelling (GDM, [75-78]) fit through the gdm package 
[79]. GDM models pairwise dissimilarities between plots taking 
non-linear relationships into account, e.g. rates of change can be 
more rapid at some points along a gradient. This allows us to 
observe patterns of non-linearity common in ecology [78]. GDM 
follows a similar structure as Generalized Linear Models, but 
instead of taking individual explanatory values and assessing 
their effect on the response variable (here the beta diversity) it 
models the absolute difference between a pair of values, ordered 
along the explanatory variable’s gradient. For example: if Plot1 
has an average temperature of 5◦C and Plot2 of 9◦C, then the GDM 
takes the difference of 4◦C to (non-linearly) model how dissimilar 
the microbial communities of the two plots are, at the gradient 
between 5◦C and 9◦C. The explanatory variables mirrored the 
linear models of the alpha diversity analysis but included the 
geographic distance between plots instead of the region identity. 
The variation in library size between samples was incorporated 
into the GDM as a weighting factor, putting less weight on larger 
differences. P-values for GDMs are calculated based on a permuta-
tion procedure (n = 100 permutations) and were also corrected for 
multiple testing using the Benjamini–Hochberg correction with a 
threshold of P < 0.2. 

Results 
Diversity 
We found a total of 131 ASVs for algae, 1750 for fungi, and 1263 for 
bacteria. The highest ASV richness at the regional level occurred 
within fungi, while the lowest number of ASVs was found for the 
terrestrial green algae (Table 3). Generally, we observed that ASV 
richness decreases from south-west (Swabian Alb) to north-east 
(Schorfheide-Chorin) Germany (Table 3). 

The most abundant algal orders were Trebouxiales, Chlorel-
lales, and Prasiolales (Fig. 1). The bacterial portion was primarily 
composed by taxa from the order Rhizobiales followed by Aceto-
bacterales, which became dominant on some plots in the north-
east (Fig. 1) where pine was the dominant tree species. For fungi, 
we found a different pattern, with a large proportion of reads 
not assignable at the order level, predominantly stemming from 
unassigned Dothideomycetes. There were no dominating orders, 
with Lecanorales, Capnodiales, and Chaetothyriales showing the 
highest relative abundance in the assignable portion of reads 
(especially in the north-east). Generally, abundance patterns were 
similar across regions and plots, with the exception of pine-
dominated plots. 

Drivers of diversity 
Alpha diversity 
All three organismal groups responded significantly (P < 0.2 after 
Benjamini–Hochberg correction) to biotic factors on at least one 
diversity level. Both algal and bacterial “all species” diversity (q = 0)  
significantly (both P < 0.01) increased with higher fungal ASV 
richness (Fig. 2), while there was no effect of algal ASV richness 
on bacteria and vice versa. Fungal ASV richness increased sig-
nificantly with algal and bacterial ASV richness (algae P = 0.056, 
bacteria P = 0.001). Dominant algae (q = 2) positively influenced 
bacterial diversity (P = 0.078, Fig. 2). The mutual influence of dom-
inant fungi and algae was negative, although not significant. 

An important abiotic factor was canopy openness (proxy for 
light availability; Table 2), which influenced both fungal and bac-
terial diversity significantly. While fungal diversity increased with 
higher canopy openness (q0 P = 0.078, q1 P = 0.063, q2 P = 0.057), 
bacterial diversity of all and common species (ASVs) significantly 
decreased (q0 P = 0.005, q1 P = 0.143) (Fig. 2). A negative direction of 
algal diversity (q = 0–2) could be observed with increasing canopy 
openness. Relative humidity increased fungal diversity signifi-
cantly, while decreasing directions were found for the diversity 
of all and typical bacteria while dominant bacteria increased. 
All levels of diversity for algae increased with higher humidity. 
The effects of the variables not shown here can be found in 
Supplementary Figure 1. 

The variance (adjusted R2) explained by the linear models 
ranged between 17 and 48% (Fig. 3) and was the lowest for algal 
alpha diversity. The pure variance explained by abiotic factors 
was often higher than that of biotic factors on the alpha diversity 
level (Fig. 3), except when assessing diversity of “all” species. 
Abiotic factors also explained more variance when considered in 
combination with geographic factors (Fig. 3 a + g), especially for 
models of fungal and bacterial alpha diversity. 

Beta diversity 
The beta diversity of all three organismal groups responded sig-
nificantly (algae all P < 0.05, except effect of dominant fungi 
P < 0.1; fungi all P < 0.05, except “all” and dominant algae P < 0.1; 
bacteria all P < 0.05) to changes in the diversity of the respec-
tive microbial partners (Fig. 4), e.g. if two plots differed in their 
bacterial community, they also differed in their algal and fungal 
composition. Most of the effect curves followed an exponential 
shape sloping upwards with increasing community dissimilarity, 
meaning the effects were strongest at high β-diversity and indi-
cating a concurrent change of community composition. Assessing 
predictor importance (deviation in variance explained when a 
given predictor is permuted), bacteria were the most important 
biotic predictor on all three levels of fungal and algal beta diversity 
(Table 4), followed by fungi, which were slightly less important for 
algae and bacteria at all levels. Dominant bacteria were the most 
important biotic predictor for fungi, while algae were the most 
important biotic predictor of β-diversity of dominant bacteria.
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6 | Dreyling et al.

Figure 1. Community composition of algal, fungal, and bacterial communities associated with bark surfaces in three study regions. Given is the 
relative abundance of orders per plot. Each bar represents one plot. Only the 25 most abundant orders per organismal group are included. 

Of the abiotic factors we tested, temperature and canopy 
openness were the two most important predictors of community 
dissimilarity ( Table 4), but their importance was usually lower 
than that of the biotic factors, except for typical and dominant 
fungi, as well as dominant bacteria. Differences in temperature 

significantly influenced the communities for most measures 
(Fig. 4, algae q0 = P < 0.2, bacteria and fungi all P < 0.05), but not 
the typical and dominant algal communities. For fungi, we found 
high community dissimilarity at lower temperature which sat-
urated into homogeneous communities at higher temperatures
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Figure 2. Drivers of algal, fungal, and bacterial communities associated with bark surfaces. Graphs indicate the effects of biotic and abiotic variables 
on three α-diversity measures (hill number q = 0, 1, and 2) of all three organismal groups. These are the results of linear models. Axes are scaled. 
Asterisks indicate Benjamini–Hochberg corrected P-values (∗< 0.2, ∗∗<0.1, ∗∗∗< 0.05). For an explanation of the variables, see Table 2. 

Table 4. Importance of the tested variables for the prediction of algal (A), fungal (F), and bacterial (B) beta diversity on all three levels of 
q. The most important predictors are highlighted in bold; asterisks indicate significance of predictors after Benjamini–Hochberg 
correction in the GDM. ∗P < 0.2, ∗∗P < 0.1, and ∗∗∗P < 0.05. 

Variable Predictor importance for β-diversity 

Q = 0 Q = 1 Q = 2  

A F B A F B A F B 

Biotic factors 
Algal diversity X 1.47∗∗ 2.73∗∗∗ X 3.42∗∗∗ 6.69∗∗∗ X 2.79∗ 7.31∗∗∗ 

Fungal diversity 3.30∗∗∗ X 19.64∗∗∗ 8.67∗∗∗ X 9.68∗∗∗ 10.28∗∗∗ X 4.41∗∗∗ 

Bacterial diversity 7.95∗∗ 17.52∗∗∗ X 11.66∗∗∗ 10.32∗∗∗ X 16.50∗∗∗ 5.20∗∗∗ X 
Abiotic factors 
Geographic 0.15∗ 0 0 0.04 0.01 0 0.36∗∗∗ 0 0 
Relative humidity 2.57∗ 0.02 0 0 1.03∗∗ 0.03 0 1.91∗∗ 0.32 
Temperature 1.89∗ 6.51∗∗∗ 0.85∗∗∗ 0.13 12.85∗∗∗ 4.31∗∗∗ 0.55∗ 27.15∗∗∗ 11.79∗∗∗ 

Average DBH 0.23 0.06 0 0.23 0.03 0 0.55 0.03 0.09 
Canopy openness 0.04 0.46∗ 2.51∗∗ 0.54 1.33∗ 2.40∗∗∗ 0.61 4.31∗∗ 6.82∗∗∗ 

Gini coefficient 0.64 0.26 0.58∗ 0.41 0.25 1.02∗∗∗ 0.48 0.13 1.71∗∗∗ 

Stand density 0 0.04 0.20 0.22 0.08 1.04∗ 0.38 0.10 3.15∗∗∗ 

Ratio of dominant trees 0.78 0.07 0.13 0.28 0.03 0.51∗ 0.33 0.13 0.51 
Forest area 0.66 0.19 0.05 0 0.33 0.36 0 1.40∗ 0.52 
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8 | Dreyling et al.

Figure 3. Contribution of different drivers to total observed variance in alpha and beta diversities. Abiotic variables (a), biotic variables (b), geographic 
distance (g), and combinations of these drivers explain part of the overall variance. Negative variance in the linear models is explained by the two 
factors having opposing effects on the response. 

( Fig. 4). Bacterial communities generally showed strong changes 
in dissimilarity at higher temperature, but beta diversity remained 
unchanged at low temperature (Fig. 4). Changes in canopy 
openness and the associated increase in light availability 
significantly influenced the communities of both fungi and 
bacteria at all levels of beta diversity (Fig. 4, fungi q0 + q1 = P < 0.2, 
q2 = P < 0.1; bacteria q0 = P < 0.1, q1 + q2 = P < 0.05). Bacterial 
communities displayed more rapid turnover with small increases 
in light availability in closed forests than in open ones (Fig. 4). 
The patterns of algal diversity were similar to those of bacteria 
and, although not significant, canopy openness usually was the 
most important abiotic predictor (Table 4; small effect size). Fungi 
responded differently to canopy openness. While the response 
of the full community was almost linear with shallow slope at 
increasing openness, the typical and dominant taxa showed a 
rapidly changing composition with high rates of change in more 
open conditions which is potentially connected to the strong 
increase in alpha diversity. The effects of the variables not shown 
here can be found in Supplementary Figure 2 and an overview of 
predictor importance can be found in Table 4. 

The variance of beta diversity explained by the GDMs was 
between 37 and 75% and, again, was lowest in the models of algal 
diversity. In contrast to the alpha diversity, biotic factors explained 
more variance than abiotic factors in all three organismal groups, 
except for dominant fungi and bacteria (Fig. 3). A similar amount 
of variance was explained by combined effects of biotic and 
abiotic effects. Geographic distance explained only small amounts 
of variance. 

Discussion 
Fungi are the richest group found on bark 
surfaces with many unknown taxa 
We studied the three main micro-organismal groups of the bark 
surface, and found that communities of fungi contained 90 ASVs 
per sample on average; 4.5 times more than algae (20 ASVs) and 

1.3 times more than bacteria (70 ASVs). Compared to other forest 
habitats like soil, the microbial bark surface community is more 
unknown, especially for fungi. A study with soil samples from the 
same plots, sampled approximately at the same time, found that 
only 2% of the relative abundance came from fungal ASVs that 
were not assignable past the order rank [80], while in our study 
it was up to 50%, much of it from the ubiquitous class Doth-
ideomycetes [81, 82]. The diversity harboured by bark surfaces, 
and especially its unknown portion, underlines the importance of 
further research on the bark microbiome. Of particular interest is 
the identification and potentially isolation of unknown fungi, con-
sidering that bark surfaces have been proposed as microbial reser-
voirs [16] that potentially contain an array of pathogenic and/or 
beneficial taxa relevant to plant health, as previously shown for 
bacterial epiphytes on grapevines [35]. Furthermore, it is likely 
that the reservoir effects of bark shape assembly processes in 
other forest compartments, e.g. by enabling early colonization 
of the phyllosphere in spring [8, 16] through the bark’s seasonal 
stability [83], or dispersal to soils via stemflow [18]. Additionally, it 
has been shown that bark is of great importance for the composi-
tion and diversity of deadwood microbiomes. In a study by Hagge 
et al. [84] bark coverage increased the importance of stochastic 
assembly mechanisms, one of which could be “priority effects” of 
the original community found in the bark surface reservoir. 

Abiotic conditions strongly impact alpha, but not 
beta diversity 
To assess how the different groups within the bark surface micro-
biome respond to changes in their environment, we tested abiotic 
variables associated with climatic conditions and habitat con-
nectedness. From previous studies of phyllosphere microbiomes, 
we expected that variables directly influencing individual organ-
isms (e.g. humidity, temperature, light) would have the largest 
impacts on the communities. We found that the alpha diver-
sity of the bark surface microbiome is strongly affected by abi-
otic factors, while abiotic factors (except temperature) were less
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Figure 4. Drivers of algal, fungal, and bacterial communities associated with bark surfaces. Graphs indicate the effects of biotic and abiotic variables 
on three β-diversity measures (hill number q = 0, 1, and 2) of all three organismal groups. These are the results of GDM. The higher the curves 
maximum is, the larger the effect of the explanatory variable. The form and slope of the curve indicates how rapid changes in β-diversity are in 
relation to outside influences. Asterisks indicate Benjamini–Hochberg corrected P-values (∗< 0.2, ∗∗<0.1, ∗∗∗< 0.05). For an explanation of the 
variables, see Table 2. 

important for community dissimilarity (Figs 3 and 4, Table 4). This 
indicates that while the size of the community may be limited by 
certain environmental conditions, which regulate ASV richness 
and how evenly common and rare taxa occur, they only weakly 
affect which taxa are present in the microbiome. 

Since abiotic conditions are known to influence different com-
ponents of micro-organismal communities differentially, e.g. bac-
terial soil communities responding more strongly to drought than 
fungal communities [34] and free-living fungi being more suscep-
tible to drought than mycorrhizal fungi [85], we expected different 
responses of algae, bacteria, and fungi, especially to climatic 
conditions. When considering the three organismal groups, we 
found the strongest difference for humidity (alpha diversity) and 
temperature (beta diversity). While humidity strongly increased 
fungal alpha diversity, it had no significant effects in the other two 
organismal groups. However, bacterial diversity of “all” and “typi-
cal” species (ASVs) decreased with relative humidity. In contrast, 
temperature had no significant effect on alpha diversity at all. 
These contrasting effect directions for humidity are known from 

phyllosphere microbiomes [30], as well as from rhizosphere com-
munities [86]. Strong differences even within organismal groups 
(e.g. [30, 85]) underline the need for caution when generalizing 
these patterns. 

At the beta diversity level, temperature had the strongest effect 
on fungal communities and on dominant bacteria. Similar to the 
findings of de Vries et al. [34], we found that fungal communities 
were more similar at the high end of the temperature range, while 
the (typical and dominant) bacterial, as well as algal, communi-
ties showed higher turnover with increases in temperature. The 
exponential curve for algae and bacteria might indicate that these 
communities reach a “tipping point” after which rapid change sets 
in, accompanied by high turnover along the temperature gradient 
[78]. 

Light is expected to affect both photosynthetic organisms and 
microbial alpha and beta diversity [84, 87]. In the current study, 
a higher availability of light lead to an increase of fungal, but 
a decrease of algal and bacterial diversity (Fig. 2), suggesting 
that bark surface algae and bacteria are adapted to low light
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conditions and potentially damaged by too much UV radiation 
[31, 88]. For beta diversity, the slopes reached a plateau at higher 
light levels for both algae and bacteria, indicating homogeneous 
communities at higher light conditions. This suggests that 
the algal and bacterial communities become less rich but are 
potentially adapted to higher light conditions, for example, 
through the synthesis of carotenoid compounds [89]. Although 
many fungi employ strategies to limit damage from UV radiation, 
making them potentially more resistant to high light stress [90], 
we detected high rates of change under high light conditions for 
fungi. The high turnover, especially in the dominant fungal taxa, 
potentially indicates that fungal communities of open canopy 
forests are specialized towards high light availability. 

Biotic interactions determine community 
composition 
Interactions between algae, bacteria, and fungi have been shown 
to take many forms, from competition over parasitism to well 
described symbioses like lichens [17, 19, 20, 24]. Thus, we expected 
close connections between the three organismal groups in the 
bark surface microbiome. Indeed, we could observe that changes 
in the community composition were highly depending on changes 
in composition of the other groups. This suggests that there are 
certain fractions of algal, fungal, and bacterial communities that 
are favourably associating with one another. Similarly, Arrigoni 
et al. (2018) [8] described a state of stable equilibrium between 
pathogenic and beneficial bacteria and fungi on the bark of fruit 
trees. 

While biotic effects were less important for alpha diversity, they 
were in almost all cases far more important for beta diversity 
than abiotic effects and explained the most variance (Fig. 3). 
Fiore-Donno and colleagues [91] recently reported similar pat-
terns within the alpine soil microbiome, where biotic interactions 
outweighed edaphic and topographic influences. Within the biotic 
factors, bacterial beta diversity was the most important. This 
might be due to the high pathogenic potential of bacteria affecting 
both algae and fungi [19, 24], but also due to supplying nutrients 
like nitrogen, especially considering the high impact on algal 
communities for which growth promotion through bacterial co-
occurrence has been reported [22, 92]. Furthermore, heterotrophic 
bacteria commonly colonize the phyco- and mycosphere, the 
space surrounding algal and fungal cells [21, 93]. In these niches, 
they exchange compounds like photoassimilates and engage in 
other beneficial interactions with the host, mirroring the plant 
rhizosphere [21]. Bacteria, on the other hand, are strongly influ-
enced by the fungal communities, potentially due to the fungal 
mycelium providing opportunities for transport [27] but also pro-
tective structures under non-favourable conditions [94], in addi-
tion to the provision of carbon from cell wall material [95]. Since 
close interactions between fungi and algae have been known for 
a long time, most notably from the lichen symbiosis [96], the 
strong fungal influence on algae was expected and was only 
slightly less than that of bacteria. A study by Hom and Murray 
[97] showed that mutualistic interactions of algae and fungi can 
also form spontaneously under low nutrient conditions, which are 
an inherent characteristic of the bark surface habitat. 

It is important to note that a large proportion of the variance in 
the beta diversity models is jointly explained by abiotic and biotic 
conditions, and thus we cannot exclude indirect effects of abiotic 
conditions on a certain group through changes in another, e.g. 
increasing temperature could lead to changes in fungi which, 
in turn, changes bacterial and algal communities. However, 
we also need to consider that the microbiome can alter and 

mediate abiotic conditions such as nutrient or water availability 
[98, 99] as has been shown for microbiome–plant relationships 
(e.g. [100]). 

Regions differ mostly in their alpha but not beta 
diversity 
Geographical distance is often associated with differences in envi-
ronmental conditions. Previous studies of macro-organisms, like 
plants [101] and arthropods [102], in the Biodiversity Exploratories 
found significant differences between the three study regions that 
can be explained by nutrient availability, substrate differences, 
and land-use intensity. For the bark microbiome, we expected a 
similar pattern due to some differences in tree species (pine in 
the north-east, spruce in the south-west) and the corresponding 
differences in the direct abiotic environment. Similarly, we found 
significant differences for alpha diversity between the regions 
with a diversity decrease from the south-west to the north-east 
region. Region explained much of the variation in alpha diversity, 
but the high variation explained jointly with abiotic conditions 
suggests that there may be abiotic differences between regions 
not considered in our study, e.g. wind as a dispersal vector [103]. 
In previous studies of subaerial algae [32] and phyllosphere micro-
biomes [30] geographic location was a main influencer of micro-
bial diversity leading to distinct communities. However, predictors 
were not as finely differentiated as in our study. We found that 
the geographic effect on community composition is negligible 
(Table 4), despite significant impacts on algae (Supplementary 
Table 2), mirroring the results of Aguirre-von-Wobeser et al. [9] 
for bacteria and fungi on avocado bark. 

Caveats 
While our sample sites are representative of Central European 
forests [41] generalizations extending to other forest types, cli-
mate zones, or continents should be drawn with caution. Since 
the bark microbiome is still highly unknown at the global level 
we want to underline the need for further studies to make these 
comparisons possible. However, because similar forest features 
affect the diversity of multiple trophic groups in both temper-
ate and tropical forests (e.g. [38, 104]), we hypothesize that this 
might also be the case for the bark microbiome. Additionally, 
we were not able to capture all possible forest parameters that 
might contribute to the community assembly, as evident from the 
percentage of unexplained variance. The tree species included in 
this study (F. sylvatica, P. abies, and  P. sylvestris) vary in additional 
features like bark texture, pH or chemical composition, opening 
up other possibilities for niche differentiation even at the level 
of individual trees. Furthermore, there may also be a seasonal 
influence on the microbiome (e.g. [105]). Future studies would 
greatly benefit from including not only micro-niche parameters, 
but also spatio-temporal data, to clarify the driving mechanisms 
further. 

Beyond the addition of further deterministic factors, the 
unexplained variance also warrants consideration of other, non-
deterministic, assembly mechanisms at play. Zhou and Ning [106] 
state that deterministic and stochastic processes are both of 
great importance for microbial communities, and act in the same 
temporal space. Ecological stochasticity, including processes such 
as ecological drift, diversification, death, and “birth”, but also 
random colonization events, are certainly also influencing the 
bark microbiome. These processes are highly likely to shape the 
community composition and manipulate the connection of the 
bark surface microbiome with other forest compartments, e.g. 
through dispersal or “priority effects”. Indeed, bark has already
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been shown to increase the importance of stochastic processes 
for community dynamics in deadwood microbiomes, especially 
in the early colonization stage [84]. 

Another important aspect is of technical nature: the use of 
ASVs over Operational Taxonomic Units (OTUs). It is an ongoing 
debate which approach is more meaningful for obtaining diversity 
estimates, especially for fungi. No consensus has been reached to 
date, with recent studies making compelling statements for either 
choice [107-110]. We decided to use ASVs because of the higher 
accuracy without imposing arbitrary thresholds. To account for 
possible slight variations even within individuals and species, 
especially when considering ITS as a marker, we employed best-
practice tools like the LULU algorithm [58]. Diversity estimates of 
any metabarcoding study, in our opinion, should be interpreted 
with care and taken as the diversity of sequence variants. 

Conclusions 
In this study, we provide the first comprehensive assessment of 
the bark surface microbiome and its drivers in Central European 
forests. Our results can inform future hypothesis-driven research 
such as predictive modelling to assess the responses of the forest 
microbiome to future environmental conditions under climate 
change. We show that while abiotic factors influence the micro-
bial communities, biotic interactions are usually more impor-
tant, especially for community composition. Our study highlights 
the importance of integrating research on a diverse array of 
organisms if we want to understand the processes governing 
microbiome assembly. Combining our findings with results from 
other forest compartments will allow us to assess which taxa 
are shared between microbial habitats in forests and study how 
connections as well as dispersal, e.g. through stemflow, function 
among them. Lastly, future studies will benefit from the addition 
of functional information, e.g. through meta-transcriptomics or -
genomics, since the nature of the interactions remains hidden and 
difficult to identify. 
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