218 research outputs found

    The relationship between Centaurs and Jupiter Family Comets with implications for K-Pg-type impacts

    Get PDF
    Centaurs - icy bodies orbiting beyond Jupiter and interior to Neptune - are believed to be dynamically related to Jupiter Family Comets (JFCs), which have aphelia near Jupiter's orbit and perihelia in the inner Solar system. Previous dynamical simulations have recreated the Centaur/JFC conversion, but the mechanism behind that process remains poorly described. We have performed a numerical simulation of Centaur analogues that recreates this process, generating a data set detailing over 2.6 million close planet/planetesimal interactions. We explore scenarios stored within that data base and, from those, describe the mechanism by which Centaur objects are converted into JFCs. Because many JFCs have perihelia in the terrestrial planet region, and since Centaurs are constantly resupplied from the Scattered Disc, the JFCs are an ever- present impact threat

    Core cracking and hydrothermal circulation can profoundly affect Ceres' geophysical evolution

    Get PDF
    Observations and models of Ceres suggest that its evolution was shaped by interactions between liquid water and silicate rock. Hydrothermal processes in a heated core require both fractured rock and liquid. Using a new core cracking model coupled to a thermal evolution code, we find volumes of fractured rock always large enough for significant interaction to occur. Therefore, liquid persistence is key. It is favored by antifreezes such as ammonia, by silicate dehydration which releases liquid, and by hydrothermal circulation itself, which enhances heat transport into the hydrosphere. The effect of heating from silicate hydration seems minor. Hydrothermal circulation can profoundly affect Ceres' evolution: it prevents core dehydration via “temperature resets,” core cooling events lasting ∼50 Myr during which Ceres' interior temperature profile becomes very shallow and its hydrosphere is largely liquid. Whether Ceres has experienced such extensive hydrothermalism may be determined through examination of its present-day structure. A large, fully hydrated core (radius 420 km) would suggest that extensive hydrothermal circulation prevented core dehydration. A small, dry core (radius 350 km) suggests early dehydration from short-lived radionuclides, with shallow hydrothermalism at best. Intermediate structures with a partially dehydrated core seem ambiguous, compatible both with late partial dehydration without hydrothermal circulation, and with early dehydration with extensive hydrothermal circulation. Thus, gravity measurements by the Dawn orbiter, whose arrival at Ceres is imminent, could help discriminate between scenarios for Ceres' evolution

    The Puzzling Mutual Orbit of the Binary Trojan Asteroid (624) Hektor

    Full text link
    Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W.M. Keck adaptive optics observations, we found a unique and stable orbital solution, which is uncommon in comparison to the orbits of other large multiple asteroid systems studied so far. From lightcurve observations recorded since 1957, we showed that because the large Req=125-km primary may be made of two joint lobes, the moon could be ejecta of the low-velocity encounter, which formed the system. The inferred density of Hektor's system is comparable to the L5 Trojan doublet (617) Patroclus but due to their difference in physical properties and in reflectance spectra, both captured Trojan asteroids could have a different composition and origin.Comment: 13 pages, 3 figures, 2 table

    Tidal Response of Mars Constrained From Laboratory-Based Viscoelastic Dissipation Models and Geophysical Data

    Get PDF
    We employ laboratory-based grain-size- and temperature-sensitive rheological models to 16 describe the viscoelastic behavior of terrestrial bodies with focus on Mars. Shear modulus 17 reduction and attenuation related to viscoelastic relaxation occur as a result of diffusion- 18 and dislocation-related creep and grain-boundary processes. We consider five rheological 19 models, including extended Burgers, Andrade, Sundberg-Cooper, a power-law approxima- 20 tion, and Maxwell, and determine Martian tidal response. However, the question of which 21 model provides the most appropriate description of dissipation in planetary bodies, re- 22 mains an open issue. To examine this, crust and mantle models (density and elasticity) are 23 computed self-consistently through phase equilibrium calculations as a function of pres- 24 sure, temperature, and bulk composition, whereas core properties are based on an Fe-FeS 25 parameterisation. We assess the compatibility of the viscoelastic models by inverting the 26 available geophysical data for Mars (tidal response and mean density and moment of in- 27 ertia) for temperature, elastic, and attenuation structure. Our results show that although 28 all viscoelastic models are consistent with data, their predictions for the tidal response at 29 other periods and harmonic degrees are distinct. The results also show that Maxwell is 30 only capable of fitting data for unrealistically low viscosities. Our approach can be used 31 quantitatively to distinguish between the viscoelastic models from seismic and/or tidal ob- 32 servations that will allow for improved constraints on interior structure (e.g., with InSight). 33 Finally, the methodology presented here is generally formulated and applicable to other so- 34 lar and extra-solar system bodies where the study of tidal dissipation presents an important 35 means for determining interior structure

    Constraining Ceres' interior from its Rotational Motion

    Get PDF
    Context. Ceres is the most massive body of the asteroid belt and contains about 25 wt.% (weight percent) of water. Understanding its thermal evolution and assessing its current state are major goals of the Dawn Mission. Constraints on internal structure can be inferred from various observations. Especially, detailed knowledge of the rotational motion can help constrain the mass distribution inside the body, which in turn can lead to information on its geophysical history. Aims. We investigate the signature of the interior on the rotational motion of Ceres and discuss possible future measurements performed by the spacecraft Dawn that will help to constrain Ceres' internal structure. Methods. We compute the polar motion, precession-nutation, and length-of-day variations. We estimate the amplitudes of the rigid and non-rigid response for these various motions for models of Ceres interior constrained by recent shape data and surface properties. Results. As a general result, the amplitudes of oscillations in the rotation appear to be small, and their determination from spaceborne techniques will be challenging. For example, the amplitudes of the semi-annual and annual nutations are around ~364 and ~140 milli-arcseconds, and they show little variation within the parametric space of interior models envisioned for Ceres. This, combined with the very long-period of the precession motion, requires very precise measurements. We also estimate the timescale for Ceres' orientation to relax to a generalized Cassini State, and we find that the tidal dissipation within that object was probably too small to drive any significant damping of its obliquity since formation. However, combining the shape and gravity observations by Dawn offers the prospect to identify departures of non-hydrostaticity at the global and regional scale, which will be instrumental in constraining Ceres' past and current thermal state. We also discuss the existence of a possible Chandler mode in the rotational motion of Ceres, whose potential excitation by endogenic and/or exogenic processes may help detect the presence of liquid reservoirs within the asteroid.Comment: submitted to Astronomy and Astrophysic

    Dawn arrives at Ceres: Exploration of a small, volatile-rich world

    Get PDF
    On 6 March 2015, Dawn arrived at Ceres to find a dark, desiccated surface punctuated by small, bright areas. Parts of Ceres’ surface are heavily cratered, but the largest expected craters are absent. Ceres appears gravitationally relaxed at only the longest wavelengths, implying a mechanically strong lithosphere with a weaker deep interior. Ceres’ dry exterior displays hydroxylated silicates, including ammoniated clays of endogenous origin. The possibility of abundant volatiles at depth is supported by geomorphologic features such as flat crater floors with pits, lobate flows of materials, and a singular mountain that appears to be an extrusive cryovolcanic dome. On one occasion, Ceres temporarily interacted with the solar wind, producing a bow shock accelerating electrons to energies of tens of kilovolts

    The Origin of (90) Antiope From Component-Resolved Near-Infrared Spectroscopy

    Full text link
    The origin of the similary-sized binary asteroid (90) Antiope remains an unsolved puzzle. To constrain the origin of this unique double system, we recorded individual spectra of the components using SPIFFI, a near-infrared integral field spectrograph fed by SINFONI, an adaptive optics module available on VLT-UT4. Using our previously published orbital model, we requested telescope time when the separation of the components of (90) Antiope was larger than 0.087", to minimize the contamination between components, during the February 2009 opposition. Several multi-spectral data-cubes in J band (SNR=40) and H+K band (SNR=100) were recorded in three epochs and revealed the two components of (90) Antiope. After developing a specific photometric extraction method and running an error analysis by Monte-Carlo simulations, we successfully extracted reliable spectra of both components from 1.1 to 2.4 um taken on the night of February 21, 2009. These spectra do not display any significant absorption features due to mafic mineral, ices, or organics, and their slopes are in agreement with both components being C- or Cb- type asteroids. Their constant flux ratio indicates that both components' surface reflectances are quite similar, with a 1-sigma variation of 7%. By comparison with 2MASS J, H, K color distribution of observed Themis family members, we conclude that both bodies were most likely formed at the same time and from the same material. The similarly-sized system could indeed be the result of the breakup of a rubble-pile proto-Antiope into two equal-sized bodies, but other scenarios of formation implying a common origin should also be considered.Comment: 46 pages, 1 table, 11 figures accepted for publication to Icaru

    A Hot Gap Around Jupiter's Orbit in the Solar Nebula

    Full text link
    The Sun was an order of magnitude more luminous during the first few hundred thousand years of its existence, due in part to the gravitational energy released by material accreting from the Solar nebula. If Jupiter was already near its present mass, the planet's tides opened an optically-thin gap in the nebula. We show using Monte Carlo radiative transfer calculations that sunlight absorbed by the nebula and re-radiated into the gap raised temperatures well above the sublimation threshold for water ice, with potentially drastic consequences for the icy bodies in Jupiter's feeding zone. Bodies up to a meter in size were vaporized within a single orbit if the planet was near its present location during this early epoch. Dust particles lost their ice mantles, and planetesimals were partially to fully devolatilized, depending on their size. Scenarios in which Jupiter formed promptly, such as those involving a gravitational instability of the massive early nebula, must cope with the high temperatures. Enriching Jupiter in the noble gases through delivery trapped in clathrate hydrates will be more difficult, but might be achieved by either forming the planet much further from the star, or capturing planetesimals at later epochs. The hot gap resulting from an early origin for Jupiter also would affect the surface compositions of any primordial Trojan asteroids.Comment: 25 pages, 10 figures. ApJ in press. Discussion of Jupiter's volatile enrichment revised in sec. 4.

    The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion

    Get PDF
    Before acquiring highest-resolution data of Ceres, questions remained about the emplacement mechanism and source of Occator crater's bright faculae. Here we report that brine effusion emplaced the faculae in a brine-limited, impact-induced hydrothermal system. Impact-derived fracturing enabled brines to reach the surface. The central faculae, Cerealia and Pasola Facula, postdate the central pit, and were primarily sourced from an impact-induced melt chamber, with some contribution from a deeper, pre-existing brine reservoir. Vinalia Faculae, in the crater floor, were sourced from the laterally extensive deep reservoir only. Vinalia Faculae are comparatively thinner and display greater ballistic emplacement than the central faculae because the deep reservoir brines took a longer path to the surface and contained more gas than the shallower impact-induced melt chamber brines. Impact-derived fractures providing conduits, and mixing of impact-induced melt with deeper endogenic brines, could also allow oceanic material to reach the surfaces of other large icy bodies. The second extended phase of the Dawn mission provided high resolution observations of Occator crater of the dwarf planet Ceres. Here, the authors show that the central faculae were sourced in an impact-induced melt chamber, with a contribution from the deep brine reservoir, while the Vinalia Faculae were sourced by the deep brine reservoir alone
    corecore