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Key Points:7

• We present a method for determining the planetary tidal response using laboratory-8

based viscoelastic models and apply it to Mars.9

• Maxwellian rheology results in considerably biased (low) viscosities and should be10

used with caution when studying tidal dissipation.11

• Mars’ rheology and interior structure will be further constrained from InSight mea-12

surements of tidal phase lags at distinct periods.13
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Abstract14

We employ laboratory-based grain-size- and temperature-sensitive rheological models to15

describe the viscoelastic behavior of terrestrial bodies with focus on Mars. Shear modulus16

reduction and attenuation related to viscoelastic relaxation occur as a result of diffusion-17

and dislocation-related creep and grain-boundary processes. We consider five rheological18

models, including extended Burgers, Andrade, Sundberg-Cooper, a power-law approxima-19

tion, and Maxwell, and determine Martian tidal response. However, the question of which20

model provides the most appropriate description of dissipation in planetary bodies, re-21

mains an open issue. To examine this, crust and mantle models (density and elasticity) are22

computed self-consistently through phase equilibrium calculations as a function of pres-23

sure, temperature, and bulk composition, whereas core properties are based on an Fe-FeS24

parameterisation. We assess the compatibility of the viscoelastic models by inverting the25

available geophysical data for Mars (tidal response and mean density and moment of in-26

ertia) for temperature, elastic, and attenuation structure. Our results show that although27

all viscoelastic models are consistent with data, their predictions for the tidal response at28

other periods and harmonic degrees are distinct. The results also show that Maxwell is29

only capable of fitting data for unrealistically low viscosities. Our approach can be used30

quantitatively to distinguish between the viscoelastic models from seismic and/or tidal ob-31

servations that will allow for improved constraints on interior structure (e.g., with InSight).32

Finally, the methodology presented here is generally formulated and applicable to other so-33

lar and extra-solar system bodies where the study of tidal dissipation presents an important34

means for determining interior structure.35
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Plain Language Summary36

A planet responds to external tidal forces, such as those created by an orbiting moon,37

by deforming, which causes a change in its external gravitational potential field. If the38

body responds elastically, the tide raised on the planet by its moon will be aligned with39

the tide-raising potential as a result of which there will be no dissipation of energy within40

the planet. However, ordinary planetary materials respond anelastically, which means that41

energy is being dissipated and, consequently, the tidal bulge will be misaligned with the42

tide-raising moon. The amount by which a planetary body responds to an external tidal43

force depends on its interior structure such that rigid bodies will not deform appreciably,44

whereas less rigid bodies can deform significantly. Here, we use this observation for the45

Mars-Phobos system to constrain the interior structure of Mars. The models that describe46

the planet’s response to an external force are based on laboratory measurements of the de-47

formation of major planetary materials. The Mars InSight mission will make further mea-48

surements of the tidal response of Mars for comparison with our modeling results, which49

will improve our understanding of Mars’s interior structure and dynamical evolution.50
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1 Introduction51

A planet responds to tidal forces by deforming, which causes a change in its grav-52

itational potential field (see Figure 1). If the response is purely elastic, the tide raised on53

the planet by its moon, and vice versa, will be aligned with the tide-raising potential as54

a result of which the orbit of the moon will be unaffected, i.e., there is no torque acting55

and no dissipation occurs within either body. If, however, the planet reacts anelastically,56

dissipation is acting, as a result of which the tidal bulge and the tide-raising potential are57

misaligned. Since the tidal bulge reacts by applying a torque, which is proportional to the58

amplitude of the tide and to the sine of the tidal lag angle or phase lag, the orbit of the59

moon changes. Consequently, the phase lag is a measure of tidal dissipation and is de-60

termined from the angle between the tide-raising force and the tide itself and depends on61

the anelastic structure, whereas the amplitude of the tidal response is mostly sensitive to62

the elastic structure. Thus by measuring orbital changes of natural or artificial satellites63

around planets or landed spacecraft, information on a planet’s interior structure can be de-64

rived as has been done for the terrestrial solar system planets and the Moon [e.g., Padovan65

et al., 2013; Efroimsky and Lainey, 2007; Hauck et al., 2013; Yoder, 1995; Konopliv and66

Yoder, 1996; Rivoldini et al., 2011; Bills et al., 2005; Khan and Connolly, 2008; Williams67

et al., 2006; Nimmo et al., 2012; Nimmo and Faul, 2013; Dumoulin et al., 2017; Williams68

et al., 2014; Williams and Boggs, 2015; Khan et al., 2018; Zharkov and Gudkova, 2005;69

Yoder et al., 2003, among others].70

The anelastic processes that most solid state materials undergo in response to a forc-71

ing are governed by dissipative processes at the microscopic scale, in particular viscoelas-72

tic relaxation of the shear modulus due to elastically-accommodated, and dislocation- and73

diffusion-assisted grain-boundary sliding [Karato and Spetzler, 1990; Ranalli, 2001; Takei74

et al., 2014; Faul and Jackson, 2015; Karato et al., 2015]. Several models have been pro-75

posed to describe the viscoelastic behavior of planetary materials. For example, Maxwell’s76

model, the simplest of all rheological models, has often been called upon when study-77

ing tidal dissipation in planets and moons [e.g., Bills et al., 2005; Correia et al., 2014;78

Remus et al., 2012; Efroimsky and Lainey, 2007]. Yet this model only includes an elastic79

and a viscous response without a transient regime that, from a time-scale point of view,80

covers most of the period range of interest where tidal dissipation actually occurs. Also,81

Maxwell’s model has difficulty in reproducing the observed frequency dependence of dis-82

sipation ∝ ω−α, where ω is angular frequency and α the frequency exponent [e.g., Minster83
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and Anderson, 1981; Jackson et al., 2002; Benjamin et al., 2006; Jackson and Faul, 2010].84

As a consequence, Maxwellian rheology results in an unsatisfactory explanation for the85

tidal response of planetary bodies like Mars, the Moon, and the Earth [Bills et al., 2005;86

Nimmo et al., 2012; Nimmo and Faul, 2013; Williams and Boggs, 2015; Renaud and Hen-87

ning, 2018; Lau and Faul, 2019].88

In response hereto, more complex grain-size- and temperature-dependent models89

have been proposed. Among these figure the models of Andrade, Burgers, Sundberg-90

Cooper, and power-law approximation scheme, which have been studied experimentally91

[Jackson et al., 2002; Sundberg and Cooper, 2010; Jackson and Faul, 2010; Takei et al.,92

2014; McCarthy et al., 2011; Sasaki et al., 2019]. Laboratory experiments of torsional93

forced oscillation data on anhydrous melt-free olivine appear to favour the extended Burg-94

ers model over other rheological models because of its ability to describe the transition95

from (anharmonic) elasticity to grain size-sensitive viscoelastic behaviour [Faul and Jack-96

son, 2015]. Because of the improved flexibility that comes with a larger number of de-97

grees of freedom, application of these laboratory-based dissipation models to geophysical98

problems has nonetheless resulted in considerable improvement in matching the observed99

frequency dependence of dissipation, in addition to simultaneously fitting attenuation-100

related data that span the frequency range from the dominant seismic wave period (∼1 s)101

over normal modes (∼1 hour) to the very long-period tides (∼20 years), i.e., a frequency102

range spanning 5 orders of magnitude [Henning et al., 2009; Efroimsky, 2012a,b; Nimmo103

et al., 2012; Nimmo and Faul, 2013; Khan et al., 2018; Lau and Faul, 2019; Benjamin104

et al., 2006; Renaud and Henning, 2018].105

While qualitatively similar in that the various viscoelastic models can be described106

in terms of dashpot and spring elements that are arranged in series and parallel, it is yet to107

be understood to what extent these models are quantitatively similar on planetary scales,108

i.e., are capable of making predictions that match global geophysical observations at dif-109

ferent forcing frequencies for a set of realistic models of the interior structure of planets.110

While most studies focus on application of a single viscoelastic dissipation model to so-111

lar system objects: Mercury [Padovan et al., 2013], Venus [Dumoulin et al., 2017], Earth112

[Bellis and Holtzman, 2014; Abers et al., 2014; Agnew, 2015; Karato et al., 2015; Lau and113

Faul, 2019], the Moon [Nimmo et al., 2012; Efroimsky, 2012a,b; Karato, 2013; Harada114

et al., 2014; Williams and Boggs, 2015; Qin et al., 2016], Mars [Lognonné and Mosser,115

1993; Yoder et al., 2003; Sohl et al., 2005; Zharkov and Gudkova, 2005; Bills et al., 2005;116
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Efroimsky and Lainey, 2007; Nimmo and Faul, 2013; Khan et al., 2018], Io [Hussmann117

and Spohn, 2004; Bierson and Nimmo, 2016; Renaud and Henning, 2018], Iapetus [Peale,118

1977; Robuchon et al., 2010; Castillo-Rogez et al., 2011], Europa [Moore and Schubert,119

2000; Hussmann and Spohn, 2004; Wahr et al., 2009; A et al., 2014], Ganymede [A et al.,120

2014; Kamata et al., 2016], Enceladus [Roberts and Nimmo, 2008; Choblet et al., 2017],121

and exoplanets [Henning et al., 2009; Efroimsky, 2012b; Renaud and Henning, 2018], stud-122

ies that quantitatively investigate several viscoelastic models concomitantly by formulating123

the problem in a geophysical inverse sense have yet to be undertaken.124

With this in mind, we consider a series of laboratory-based viscoelastic dissipa-125

tion models and quantitatively compare them using geophysical inversion with the pur-126

pose of constraining attenuation properties of planets from seismic to tidal time scales.127

Here, we focus on Mars for which the tidal response due to Phobos (amplitude and phase128

lag), in addition to mean density and mean moment of inertia, are available. The approach129

adopted here builds upon and extends previous work [e.g., Renaud and Henning, 2018;130

Khan et al., 2018] in that it seeks to combine a suite of experimentally-constrained grain131

size-, temperature- and frequency-dependent viscoelastic models (Andrade, extended Burg-132

ers, Sundberg-Cooper, Maxwell, and a power-law approximation scheme) with petrologic133

phase equilibrium computations that enables self-consistent computation of geophysical134

responses for direct comparison to observations. The advantage of this approach is that it135

anchors internal structure parameters that are in laboratory-based models, while geophysi-136

cal inverse methods are simultaneously employed to optimise profiles of e.g., seismic wave137

speeds, dissipation, and density to match a set of geophysical observations.138

Quantitative predictions of e.g., the tidal response at different periods can be made139

and tested against results that are expected to be obtained from the Mars InSight (Interior140

Exploration using Seismic Investigations, Geodesy and Heat Transport) mission, which141

has been operating on Mars for eight months since its deployment. InSight will measure142

attenuation, with both the SEIS (Seismic Experiment for Internal Structure) [Lognonné,143

2019] and RISE (Rotation and Interior Structure Experiment) [Folkner et al., 2018] in-144

struments at periods ranging from seconds (seismic events) to months (nutation and pre-145

cession of MarsâĂŹs rotation axis). The observation of attenuation at periods other than146

the main Phobos tide provides a means for distinguishing between the various laboratory-147

based dissipation models and will turn out to be of particular importance for understand-148

ing the thermal and viscoelastic behaviour of Mars. For community use, we tabulated pre-149
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Figure 1. Illustration of the tidal interaction between Mars and its larger moon Phobos. Courtesy of David

Ducros/IPGP.

157

158

dicted model responses (Love numbers and attenuation) at a number of distinct periods150

and spherical harmonic degree for each of the rheological models considered here. Fi-151

nally, we would like to note that although this study focuses on Mars, the methodology152

described herein is generally applicable and is easily extendable to other solar system bod-153

ies and beyond.154

2 Background155

2.1 Geophysical Analysis156

The tidal bulge raised on Mars (see Figure 1) due to its orbiting moons Phobos and159

Deimos, is a function of its internal structure and the forcing itself. Because dissipation160

is acting, the bulge does not align with the barycenteric axis (defined as the line that ex-161

tends between the center of masses of the two objects and indicated by the dashed line162

in Figure 1) but is lagging behind Phobos and ahead of Deimos. As a result of the tidal163

bulge, changes in the potential field and deformations in both radial and tangential direc-164

tions of Mars ensue (the same holds for the moons). The change in the potential field of a165

planet of radius r , subjected to a perturbation in potential Φ due to an orbiting moon is166

denoted by φ, and can be expressed as a spherical harmonics expansion in time domain as167

(in what follows we rely on the formulation of Efroimsky and Makarov [2014])168

φn(R, t) = kn

(
R
r

)n+1
Φn(R, R∗), (1)
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where n indicates the spherical harmonic degree, kn is the potential Love operator of de-169

gree n, R∗ is the position of the perturbing body, and R is a point on Mars’s surface. The170

displacement Love operators, hn and ln express the resultant vertical (radial) and hori-171

zontal (tangential) displacements at the surface of the planet as hnΦn/g and ln∇Φn/g,172

respectively, where g is the gravitational acceleration at the surface. In addition to the173

Love numbers, the magnitude of the change in gravity due to the change in the poten-174

tial field is of interest. This parameter, the gravimetric factor δ, is computed as δn =175

1 + 2hn/n − kn(n + 1/n) [e.g., Agnew, 2015].176

In the frequency domain, equation 1 can be written as177

φn
(
R, ωnm

pq

)
=

( R
r
)n+1 k̄n

(
ωnm

pq

)
Φ̄n(R, R∗, ωnm

pq ), (2)

where, ωnm
pq are the Fourier tidal modes, nm and pq are integers used to number the modes,178

and k̄n is the complex frequency-dependent Love number where k̄n(ωnm
pq ) = <

[
k̄n(ωnm

pq )
]
+179

i=
[
k̄n(ωnm

pq )
]
. The Love number kn can be written as | k̄n | exp(−iεn), where εn is the phase180

angle between the tidal force and resulting bulge and equals the geometric lag (δnmpq ) (la-181

beled “tidal lag" in Figure 1) through δnmpq = εnmpq /m [e.g., Efroimsky and Makarov, 2013].182

The phase angle is also related to the energy that is being dissipated in the tides as 1/Qn,183

where Qn is the tidal quality factor of spherical harmonic degree n184

Qn =
1

sin |(εn)|
=

√
<2(kn) + =2(kn)
|=(kn)|

, (3)

For the terrestrial planets, εn is usually small at the main tidal periods (except when the185

satellite is very close to the resonance period), as a result of which Qn can be approxi-186

mated by187

Qn ≈
1

tan |(εn)|
=
<(kn)
|=(kn)|

. (4)

In the following section, we turn our attention to intrinsic shear attenuation.188

2.2 Viscoelastic Dissipation Models189

While elasticity is a result of bond stretching along crystallographic planes in an190

ordered solid, viscosity and dissipation inside a polycrystalline material occur by mo-191

tion of point, linear, and planar defects, facilitated by diffusion. In viscoelastic behavior,192

each of these mechanisms contribute [e.g., Karato, 2008]. Deformations of a viscoelas-193

tic solid depends on the temporal-scale of the applied load [Chawla and Meyers, 1999].194

For small stresses, the stress-strain relation is linear, and the response is described in the195
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time-domain via the creep function J(t). The creep function links material properties and196

forcing (input) with the “felt" (relaxed) shear modulus and phase lag due to attenuation197

(output). The response of the material to forcing consists of an instantaneous elastic re-198

sponse followed by a semi-recoverable transient flow regime where the strain rate changes199

with time, and finally yields to steady-state creep. Based on this, the general form of the200

creep function for a viscoelastic solid consists of three terms:201

J(t)︸︷︷︸
Creep function

= JU︸︷︷︸
Elastic

+ f (t)︸︷︷︸
Transient strain-rate

+ t/η︸︷︷︸
Viscous

, (5)

where t is time and η is the steady-state Newtonian viscosity. The complex shear modulus202

Ĝ is computed from the Laplace-transformed creep or the complex compliance Ĵ = <(Ĵ)+203

i=(Ĵ) through Ĝ = 1/Ĵ [Findley and Onaran, 1965]. The relaxed shear modulus and the204

associated dissipation (Q−1
µ ) are obtained from the following expressions:205

206

GR(ω) =
{
<2[Ĵ(ω)] + =2[Ĵ(ω)]}−

1
2 , (6)

207

Q−1
µ ≈ |=[Ĵ(ω)]|/<[Ĵ(ω)]. (7)

Note that Qµ is an intrinsic material property and therefore different from the global Qn208

discussed in the previous section (cf. Eq. 3). Briefly, and as discussed in more detail in209

e.g., Efroimsky [2015] and Lau et al. [2016], the distinction between global tidal dissipa-210

tion (Qn) and intrinsic attenuation (Qµ), which is a spatially-varying material property and211

responsible for the attenuation of e.g., seismic waves, derives from the fact that Qn, in ad-212

dition to “sensing" Qµ, is also influenced by gravity and inertial effects due to rotation213

of the planet. At reasonably high frequencies, this distinction becomes redundant as Qn214

approaches Qµ.215

In the following, we consider a suite of laboratory-based viscoelastic dissipation216

models: Maxwell, extended Burgers, Andrade, Sundberg-Cooper, and a power-law scheme.217

These models derive from grain-size, temperature-, and pressure-sensitive viscoelastic re-218

laxation measurements. The dissipation models based on Maxwell, extended Burgers, An-219

drade, and the power-law scheme are described in detail in Jackson and Faul [2010] and220

rely on laboratory experiments (temperature range 800–1200◦C) of torsional forced os-221

cillation data (period range 1–1000 s) on melt-free poly-crystalline olivine (grain sizes222

in the range 3–165 µm). The model of Sundberg and Cooper [Sundberg and Cooper,223

2010] is also based on torsional oscillation data, but in a fine-grained (5 µm) peridotite224
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(olivine+39 vol% orthopyroxene) specimen (temperature range 1200–1300◦C and periods225

of 1–∼200 s).226

As shown in figure 2, each model can be represented as an arrangement of springs227

and dashpots connected in series, or in parallel, or a combination of both [Findley and228

Onaran, 1965; Moczo and Kristek, 2005; Nowick and Berry, 1972; Cooper, 2002; Jackson229

et al., 2007; McCarthy and Castillo-Rogez, 2013]. The instantaneous elastic response is230

mimicked by a spring (element 1, E1) and the fully viscous behavior by that of a dash-231

pot (element 2, E2). The series connection (i.e., a Maxwell module), includes a non-232

recoverable displacement, while a parallel connection (a Voigt module) ensures fully re-233

coverable deformations with either a discrete (element 3, E3) or a continuous distribution234

(element 4, E4, henceforth “modified" Voigt module) of anelastic relaxation times. These235

models have been applied in various circumstances to model the response of planetary236

bodies. In the following, we briefly describe each of these models that are employed later237

to model tidal dissipation within Mars.238

2.2.1 Maxwell246

Maxwell is the simplest model for expressing the viscoelastic behavior and is a se-247

ries connection of a spring and dashpot. The associated creep function with this model248

is:249

J(t) = JU︸︷︷︸
E1

+
t
η︸︷︷︸
E2

. (8)

Here, JU is the unrelaxed, i.e., infinite-frequency, compliance, and E1 and E2 represent250

spring and dashpot elements (cf. Figure 2), respectively. The compliance for this model is251

Ĵ = JU −
i
ω
, (9)

and real and imaginary parts of the complex shear modulus are computed from equation252

6253

<[Ĝ(ω)] =
τM

2ω2

JU (τM 2ω2 + 1)
, (10)

254

=[Ĝ(ω)] =
τMω

JU (τM 2ω2 + 1)
, (11)

where τM = η/GU is the Maxwell time, ω is frequency, and GU is the unrelaxed shear255

modulus. As is apparent from comparison of equations 6 and 8, this model does not in-256

clude a transient phase and immediately drops to the viscous fluid regime from the elas-257

tic response. Hence, while this model represents a reasonable approximation for very258
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}}}}
E4 E3 E2 E1

Figure 2. Schematic representation of the viscoelastic models in terms of springs and dashpots. A spring

element (E1) represents a purely elastic response, whereas a dashpot element (E2) is representative of purely

viscous damping. A series connection of elements 1 and 2 is representative of the response of a Maxwell

model (irrecoverable), whereas a connection of elements 1 and 2 in parallel (element 3) results in an anelastic

(recoverable) response with a discrete (single) spectrum of relaxation times. Arrows on spring and dashpot in

element 4, conversely, indicate an element that incorporates a continuous distribution of anelastic relaxation

times and results in a broadened response spectrum. Modified from Renaud and Henning [2018].

239

240

241

242

243

244

245
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long-period loading such as glacial isostatic adjustments [Peltier, 1974], it does not suf-259

fice for modeling the viscoelastic behaviour at intermediate periods. An extended form of260

Maxwell’s model is employed in this study, where effects of grain size, temperature, and261

pressure are accounted for through a modification of the Maxwell time (τM ) [e.g., Morris262

and Jackson, 2009; Jackson and Faul, 2010; McCarthy et al., 2011] according to263

τM (T, P, d) = τM0

(
dg
d0

)mgv

exp
[(

E∗

R

) (
1
T
−

1
T0

)]
exp

[(
V∗

R

) (
P
T
−

P0
T0

)]
, (12)

where R is the gas constant, E∗ is activation energy, V∗ is activation volume, mgv is grain264

size exponent for viscous relaxation, P is pressure, T is temperature, and τM0 is a normal-265

ized value at a particular set of reference conditions (d0, P0, and T0). Parameter values266

used here and in the following are tabulated in Table A.1.267

2.2.2 Extended Burgers268

The shortcoming of Maxwell’s model in representing a transient response between269

elastic and viscous regimes can be rectified by introducing a time-dependent anelastic270

transition between these two regimes. This implies connecting a Voigt module (E3) and271

a Maxwell module (E1 and E2 connected in series) as shown in Figure 2. For this model,272

the creep function takes the form273

J(t) = JU︸︷︷︸
E1

+∆J
[
1 − exp

(
−

t
τ

)]
︸                  ︷︷                  ︸

E3

+
t
η︸︷︷︸
E2

, (13)

where E3 corresponds to the anelastic time-dependent response, JU is, as before, unre-274

laxed compliance, respectively, ∆J is the magnitude of the anelastic contribution, and τ is275

the time constant for the development of the anelastic response. More generally, the sin-276

gle anelastic relaxation time τ can be replaced by a distribution D(τ) of relaxation times277

over an interval specified by upper (τH ) and lower bounds (τL) [Jackson and Faul, 2010].278

From a micromechanical point of view, this distribution is associated with diffusionally279

accommodated grain-boundary sliding for which dissipation varies monotonically with280

temperature and period. The creep function of the material takes the form281

J(t) = JU

[
1 + ∆

∫ τH

τL

D(τ)
[
1 − exp

(
−

t
τ

)]
dτ +

t
τM

]
, (14)

where ∆ is the fractional increase in compliance associated with complete anelastic re-282

laxation and is called the anelastic relaxation strength. A commonly used distribution of283

anelastic relaxation times associated with the monotonic background dissipation is the ab-284
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sorption band model proposed by Minster and Anderson [1981]285

DB(τ) =
ατα−1

τHα − τLα
, 0 < α < 1, (15)

for τL < τ < τH and zero elsewhere. Jackson and Faul [2010] found that their experi-286

mental data were better fit by including a dissipation peak in the distribution of anelastic287

relaxation times, which is superimposed upon the monotonic background along with the288

associated dispersion. This background peak is mostly attributed to sliding with elastic289

accommodation of grain-boundary incompatibilities [see Takei et al., 2014, for a different290

view]. The distribution for such a peak is given by291

DP(τ) =
1

στ
√

2π
exp

(
− ln ( ττP )

2σ2

)
. (16)

With this, the components of the dynamic compliance become292

<[Ĵ(ω)] = JU

(
1 + ∆

∫ τH

τL

D(τ)
1 + ω2τ2 dτ

)
, (17)

293

=[Ĵ(ω)] = JU

(
ω∆

∫ τH

τL

τD(τ)
1 + ω2τ2 dτ +

1
ωτM

)
. (18)

Note that τL and τH define the cut-offs of the absorption band, where dissipation is frequency-294

dependent (∝ ωα). The lower bound of the absorption band ensures a finite shear modulus295

at high frequencies and restricts attenuation at these periods.296

All involved timescales (τM , τL , τH , and τP) are considered to be grain size-, pressure-297

, and temperature-dependent through [Jackson and Faul, 2010]298

τi(T, P, d) = τi0

(
dg
d0

)mg

exp
[(

E∗

R

) (
1
T
−

1
T0

)]
exp

[(
V∗

R

) (
P
T
−

P0
T0

)]
, (19)

where all parameters are as before (cf. Eq 12) and i = M, L,H, P. The grain size exponent299

mg can be different in the case of anelastic (mga for i = L,H, P) and viscous relaxation300

(mgv for i = M), respectively. To more realistically account for variations of the unre-301

laxed shear modulus with temperature and pressure, Jackson and Faul [2010] suggest the302

following modification303

JU (T, P) =
[
GU (T0, P0) + (T − T0)

∂GU

∂T
+ (P − P0)

∂GU

∂P

]−1
. (20)

Values for the temperature and pressure derivatives are given in Table A.1.304

2.2.3 Andrade305

Whereas the extended Burgers model incorporates a distribution of relaxation times306

within a restricted time-scale to account for the transient anelasic relaxation, Andrade’s307
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model proposes a distribution of relaxation times in the entire time domain (represented308

by arrows on spring and dashpot). The resultant configuration of a Maxwell module and a309

“modified" Voigt module (E4) is illustrated in Figure 2, which results in a creep function310

of the form [Andrade, 1962]311

J(t) = JU︸︷︷︸
E1

+ βtα︸︷︷︸
E4

+
t
η︸︷︷︸
E2

, (21)

where β qualitatively has the same role as ∆ in the extended Burgers model, and α repre-312

sents the frequency-dependence of the compliance. In this model, the absorption band ex-313

tends from 0 to ∞. This implies that anelastic relaxation effectively contributes across the314

entire frequency range from short-period seismic waves to geological time-scales. Conse-315

quently, Andrade’s model is more economically parameterized than the extended Burgers316

model. Real and imaginary parts of the dynamic compliance are317

<[Ĵ(ω)] = JU

[
1 + β∗Γ(1 + α)ω−α cos

(απ
2

) ]
, (22)

318

=[Ĵ(ω)] = JU

[
β∗Γ(1 + α)ω−α sin

(απ
2

)
+

1
ωτM

]
, (23)

where β∗ = β/JU and Γ is the Gamma function. Note that Andrade’s model incorporates319

a broader absorption band (theoretically of infinite width) compared to the extended Burg-320

ers model, which ultimately results in frequency-dependent dissipation at all time-scales.321

Following Jackson and Faul [2010], corrections due to grain size, temperature, and pres-322

sure are applied through a pseudo-period master variable, X , which replaces the actual323

period324

X = ω−1
(

dg
d0

)−mg

exp
[(
−E∗

R

) (
1
T
−

1
T0

)]
exp

[(
−V∗

R

) (
P
T
−

P0
T0

)]
. (24)

2.2.4 Sundberg-Cooper325

To model dissipation for the combined effects of diffusional background and elastically-326

accommodated grain-boundary sliding, Sundberg and Cooper [2010] introduce a compos-327

ite creep function. Their model represents a modification to Andrade’s model in order to328

improve its functionality over a broader frequency range and to account for the variation329

of the “felt" elastic response as it has to match the unrelaxed compliance (JU ) at high fre-330

quencies and the relaxed compliance (JR) at low frequencies. This model graphically con-331

sists of two Voigt modules and a Maxwell module (cf. Figure 2); One module is similar332

to that used in Andrade’s model (E4), whereas the other module is equivalent to that of333
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the extended Burgers model (E3). The creep function for the Sundberg-Cooper model is334

thus335

J(t) = JU︸︷︷︸
E1

+ δJ
[
1 − exp(−

t
τ

) ]
︸                ︷︷                ︸

E3

+ βtα︸︷︷︸
E4

+
t
η︸︷︷︸
E2

, (25)

where all variables are as before. Similar to what has been implemented in the extended336

Burgers model, the corresponding term (E3 in Eq. 25), can be replaced by an integral337

specifying a distribution of anelastic relaxation times τ as prescribed by Eq. 14 and mod-338

ifications for grain size, temperature, and pressure are allowed for through equation 19.339

Also, accounting for the influence of these parameters in the “modified" Voigt module (E4340

in Eq. 25) is implemented in a similar fashion to Andrade’s model through the pseudo-341

period master variable X (Eq. 24). With this in mind, the real and imaginary parts of the342

dynamic compliance for Sundberg-Cooper’s model are:343

<[Ĵ(ω)] = JU

[
1 + β∗Γ(1 + α)ω−α cos

(απ
2

)
+ ∆

∫ τH

τL

D(τ)
1 + ω2τ2 dτ

]
, (26)

344

=[Ĵ(ω)] = JU

[
β∗Γ(1 + α)ω−α sin

(απ
2

)
+ ω∆

∫ τH

τL

τD(τ)
1 + ω2τ2 dτ +

1
ωτM

]
. (27)

2.2.5 Power-law Approximation345

As a final model, we consider a power-law approximation, which was originally pro-346

posed as a means of fitting earlier measurements [Jackson et al., 2002]. This model is not347

based on physical principles, but merely represents an approximation of shear dissipation.348

This power-law scheme requires that Q−1
µ � 1. Similar to the Andrade and Sundberg-349

Cooper models, this model also employs a pseudo-period master variable to account for350

the effects of temperature, pressure, and grain size, defined similar to X in Eq. 24 with mg351

= 1 [Jackson and Faul, 2010]. The power-law for Qµ takes the form352

Q−1
µ = AXα, (28)

where A is the power-law coefficient. The shear modulus dispersion associated with this353

dissipation model is354

G(ω)
GU

= 1 − cot
(απ

2
)
Q−1
µ (ω). (29)

2.3 Comparing the sensitivity of the rheological models355

Before applying the aforementioned dissipation models to Mars, it would be infor-356

mative to consider the sensitivity of intrinsic material properties to a number of key vari-357
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ables. Here, we focus on the dispersion of shear modulus GR and attenuation factor Qµ358

with forcing period, temperature, and grain size (all at constant pressure), which is shown359

in Figure 3. All parameter values used to compute the response curves are compiled in360

Table A.1. First off, we notice that both GR and Qµ vary considerably within the range361

of forcing periods considered here, which includes the tidal forcing periods of the Sun362

and Phobos and those of long- and short-period seismic waves (vertical lines on Figure 3a363

and Figure 3b). Most of the short-period seismic band (periods <1 hr) is governed by a364

broad, low-relaxation strength, high-frequency plateau (arrow in Figure 3b), characteris-365

tic of elastically-accommodated grain-boundary sliding (E3 in Figure 2), which for tidal366

periods (>1 hr) gives way to a continuous distribution of anelastic relaxation times char-367

acteristic of the high-temperature background (E4 in Figure 2). It has to be noted though368

that the exact location (in time) of the various processes is currently not well resolved.369

In general, the same features are observed in the plots showing temperature variations370

(Figure 3, plots c and d) in most of the ranges of interest for tidal studies. In the range of371

high Qµ, i.e., short periods, low temperatures, and large grain sizes, the behaviour of the372

extended Burgers and Sundberg-Cooper models is due to the existence of a background373

dissipation peak (less apparent) associated with elastically-accommodated grain-boundary374

sliding (E3), which occurs around 1300–1400 K, although the interpretation of the back-375

ground peak is less clear and is currently unexplained by any existing model [Takei et al.,376

2014; Raj and Ashby, 1975; Gribb and Cooper, 1998]. Based on the relative variation of377

the response curves, we would expect to see little difference between the Andrade, ex-378

tended Burgers, and Sundberg-Cooper models. Seismically, i.e., in terms of the relaxed379

shear modulus behaviour, Andrade and the extended Burgers models are similar as ex-380

pected based on Figure 2, while the response of the Sundberg-Cooper model is expected381

to be slightly different in the seismic band.382

Relative to forcing period and temperature, Qµ appears to vary little with grain size383

(Figure 3, plot e), whereas GR undergoes significant changes for very small grain sizes384

(<0.1 mm) (Figure 3, plot f). In contrast, the largest changes in Qµ occur in the range385

of relatively large grain sizes (10–100 mm) and, because of the relative flatness of the386

extended Burgers and Sundberg-Cooper models in this range, compared to Andrade and387

and power-law, respectively, the latter two are more likely to resolve (large) grain sizes.388

Also, since small grain sizes are accompanied by a considerable reduction in GR, which389

is equivalent to an overall “softening", and, as a consequence, a potentially significant390
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change in tidal response, small grain sizes are less likely to accord with observations. In-391

cidentally, the grain-size insensitivity of the extended Burgers model, in addition to pref-392

erential sampling of relative large grain sizes, was observed in our previous work [Khan393

et al., 2018].394

It is readily recognized from this comparison that the behaviour of Maxwell’s model395

is distinct. In fact, the aforementioned lack of a transient response from elastic to viscous396

behaviour is clearly visible in Figure 3 as a sudden drop-off in GR. While the Maxwell397

model clearly shows evidence of frequency-dependent dissipation, the latter is too strong398

to be representative of dissipation in planetary materials. As indicated in Figure 3, the399

tidal periods of Mars lie in the intermediate range, where a composite of both elastic and400

viscous regimes contribute to the response – a feature that is incompatible with Maxwell’s401

model. This will be discussed further in section 5.2.4. As for the power-law, the other402

simplified rheological model, it shows behaviour that appears compatible with the three403

main models in the restricted range of low temperatures, seismic periods (∼1 s–30 min),404

and larger grain sizes. However, since this model, like Andrade, lacks a cut-off in the405

frequency-dependent absorption band, both show similar behaviour in the aforementioned406

parameter range.407

As a preliminary summary, we can make the following predictions: 1) the response408

of Maxwell’s model is such that it is unlikely to match geophysical observations through-409

out most of the period range of interest; 2) the long-period and high-temperature behaviour410

of the power-law scheme is not realistic; 3) the Andrade, extended Burgers, and Sundberg-411

Cooper models provide qualitatively similar responses over most of the period and temper-412

ature range considered here, although Andrade, as expected, is less dissipative at the very413

longest periods and highest temperatures. The similarity of the three models is not unsur-414

prising given that they contain many of the same elements as shown in Figure 2. These415

observation will be quantitatively assessed in the following, where the laboratory-based416

dissipation models are combined with geophysical inverse modeling.417

3 Geophysical data427

In this study we focus on mean density (ρ̄), normalized mean moment of inertia430

(I/MR2), and tidal response in the form of the second-degree tidal Love number (k2) and431

global tidal dissipation or tidal quality factor (Q2). The data are discussed in detail in the432

literature [e.g., Yoder et al., 2003; Lainey et al., 2007; Konopliv et al., 2016; Genova et al.,433
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Quantity Symbol Value and Uncertainty Reference

Mean density ρ̄ 3935 ± 1.2 kg/m3 Rivoldini et al. [2011]

Mean moment of inertia I/MR2 0.36379 ± 0.0001 Konopliv et al. [2016]

Tidal Love number k2 0.169 ± 0.006 Konopliv et al. [2016]

Global quality factor Q2 95 ± 10 Khan et al. [2018]

Mass M 6.417· 1023 ± 2.981 · 1019 kg Konopliv et al. [2016]

Radius R 3389.5 km Seidelmann et al. [2002]

Table 1. Martian geophysical data, uncertainties, and sources. Tidal Love number and global quality factor

are referenced to the main tidal period of Phobos (5.55 hr).

428

429

2016; Rivoldini et al., 2011; Nimmo and Faul, 2013; Khan et al., 2018] and need not be434

repeated here. The geophysical data are summarized in Table 1.435

4 Computational aspects436

Formally, predicting data (d) from a set model parameters (m) is usually written as437

d = g(m), where g embodies the physical laws that connect m and d. In the present case,438

g comprises a set of algorithms (g1, . . . , g4) as a result of which d = g(m) can be written439

as440

Model parameters︸                 ︷︷                 ︸
section 4.1

g1
−→ Mineralogy︸        ︷︷        ︸

section 4.2

g2
−→ Elastic properties︸                ︷︷                ︸

section 4.2

g3
−→ Viscoelasticity︸            ︷︷            ︸

section 2.2

g4
−→ Data︸︷︷︸

table 1

In the following, we describe the steps needed to compute “synthetic" data (ρ̄, I/MR2, k2,441

and Q2) from the model parameters.442

4.1 Model parameterisation and prior model distribution443

We assume a spherically symmetric model of Mars consisting of crust, lithosphere,444

mantle, and core as illustrated in Figure 4.445

Crust and mantle. In line with our previous work [Khan and Connolly, 2008; Khan446

et al., 2018], crust and mantle compositions are parameterized in terms of major element447

composition in the model chemical system CFMASNa (comprising the oxides of the ele-448

ments CaO-FeO-MgO-Al2O3-SiO2-Na2O); a system that accounts for more than 98% of449

the mass of Mars’ silicate envelope. Crust and mantle compositions are fixed in this study450
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and are compiled in Table 3. The crust is further parameterized in terms of thickness and451

surface porosity. Porosity γ is assumed to vary linearly from the surface to the bottom452

of the Moho (of thickness dcrust ), where porosity vanishes due to pressure. The litho-453

sphere is described by thickness (dlit ) and temperature (Tlit ). Within the crust and litho-454

sphere, temperature is computed by a linear areothermal gradient that is determined from455

a fixed surface temperature (Tsur f ace) and lithospheric temperature and depth. The sub-456

lithospheric mantle adiabat is defined by the entropy of the lithology at the temperature457

Tlit and at depth dlit , which also defines the location where the conductive lithospheric458

geotherm intersects the mantle adiabat. Mantle viscoelasticity. Parameters needed to com-459

pute mantle viscoelasticity depend on the chosen rheological model (section 2.2). The two460

important parameters that are common to all of the rheological models are grain size (dg)461

and frequency-dependence (α). In addition to these two parameters, we consider anelas-462

tic relaxation strengths ∆B and β and Andrade-model coefficient A as variable parameters463

given their importance in determining viscoelastic behaviour. Activation energy (E∗) and464

volume (V∗) were shown to be of less relevance in our previous work [Khan et al., 2018].465

All other viscoelastically-related parameters are fixed and given in Table A.1.466

Core. As in most geophysical models of Mars, we assume that S is the dominant467

light element 1) because Si, C, and O are not sufficiently soluble in an Fe-rich liquid468

at the low pressures that are expected to have been maintained during core formation469

[Stevenson, 2001] and 2) because of the observed depletion of chalcophile elements, no-470

tably S, of the Martian meteorities [McSween and McLennan, 2014]. Following previous471

work [e.g., Rivoldini et al., 2011; Khan et al., 2018], the core is assumed to be liquid, con-472

vecting, and well-mixed, and parameterised in terms of radius (rcore), Sulphur content473

(XS), and temperature (adiabat). The core adiabat is not independent of the mantle adi-474

abat, but determined so that the thermodynamically-computed temperature at the core-475

mantle-boundary provides the input temperature for the core adiabat.476

Finally, all parameters and prior model parameter distributions are summarised in480

tables 2–4.481

4.2 Computing elastic and viscoelastic properties486

To compute stable mantle mineralogy, seismic wave velocities, and density along487

self-consistent mantle adiabats as functions of pressure and composition in the CFMASNa488

model chemical system, we follow previous work [e.g., Khan and Connolly, 2008; Khan489
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Viscoelastic model Parameters and prior information

α dg (mm) β ∆B A

Distribution Uniform Log-uniform Log-uniform Uniform Uniform

Andrade 0.2–0.6 0.001–50 10−14-10−9 – –

Extended Burgers 0.2–0.6 0.001–50 – 0.9–2 –

Power-law 0.2–0.6 0.001–50 – – 0.001–0.01

Sundberg-Cooper 0.2–0.6 0.001–50 10−14-10−9 0.9–2 –

Table 2. Viscoelastic model parameters and prior distributions.482

Component Crust Mantle

CaO 7.0 2.4

FeO 18.8 18.7

MgO 9.2 30.7

Al2O3 10.9 3.5

SiO2 50.7 44.1

Na2O 3.3 0.6

Table 3. Major element crust and mantle compositions used in this study. Crust and mantle compositions

are from Taylor and McLennan [2008] and Taylor [2013]. All numbers in weight percent.

483

484

Parameter Description Interval Distribution

γ Surface porosity 0.5–0.65 Uniform

dcrust Crustal thickness 10–90 km Uniform

Qlit Shear attenuation in crust and lithosphere 1000 fixed

Tsur f ace Surface temperature 0 ◦C fixed

dlit Lithospheric depth 100–400 km Uniform

Tlit Lithospheric temperature 700–1450 ◦C Uniform

rcore Core radius 0–3000 km Uniform

XS Core sulfur content 0–100 % Uniform

Table 4. Crust, lithosphere, mantle, and core model parameters and prior distributions.485
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et al., 2018] and employ Gibbs free energy minimization [Connolly, 2009]. For this pur-490

pose, the thermodynamic formulation of Stixrude and Lithgow-Bertelloni [2005b] and pa-491

rameters of Stixrude and Lithgow-Bertelloni [2011] are used. Pressure is obtained by in-492

tegrating the surface load. In the context of computing mantle properties, we would like493

to note that the pressure and temperature derivatives of the shear modulus (Eq. 20) em-494

ployed earlier (section 2.3), are not used here as these are determined as part of the free495

energy minimization. To account for the effect of porosity on crustal seismic P- and S-496

wave velocities (VP and VS) and density (ρ), all three parameters are multiplied by the497

depth-dependent porosity.498

To compute elastic properties of the core in the FeS system, we rely on the parame-499

terisation of Rivoldini et al. [2011] as also implemented in our previous work [Khan et al.,500

2018]. Arguments for S as the main light alloying element in Mars’s core are summarised501

in [e.g., Rivoldini et al., 2011; Khan et al., 2018; Smrekar et al., 2019]. The core is as-502

sumed to be homogeneous, fully convecting, and completely molten [e.g., Lognonné and503

Mosser, 1993; Zharkov and Gudkova, 1997; Yoder et al., 2003]. Since the core is assumed504

to be fluid, it does not support shear and consequently no shear dissipation occurs. Hence,505

its response only includes the buoyant component and it is completely in quadrature with506

the acting force. In line with previous work, bulk dissipation is considered negligible. Fi-507

nally, to “convert" the elastic (unrelaxed) shear moduli to viscoelastic (relaxed) moduli, we508

compute shear attenuation (Qµ) and relaxed shear moduli using the equations described509

in section 2.2 for each of the rheological models. Shear attenuation in the crust and litho-510

sphere is fixed to Qlit =1000. As for the core, we assume that dissipation only occurs in511

shear. This seems appropriate given that dissipation in bulk is negligible [Benjamin et al.,512

2006].513

4.3 Computing tidal response514

To determine the frequency-dependent tidal response of a spherically symmetric,515

self-gravitating, and viscoelastic planetary model, we use an adaptation of the method and516

code developed by Al-Attar and Tromp [2014] and Crawford et al. [2018] for modeling517

glacial loading. This approach is based on the generalised spherical harmonic expansions518

(Phinney & Burridge 1973) of the displacement field and gravitational potential pertur-519

bation, and leads to a complete decoupling between the radial expansions coefficients for520

each spherical harmonic degree and order. The resulting ordinary differential equations521
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are then efficiently solved using a one-dimensional spectral element discretisation. Inertial522

terms in the equations of motion are neglected within these calculations due to the tidal523

periods being well below those of the gravest free oscillations. Quasi-static deformation in524

the fluid core is modelled following the approach of Dahlen [1974], with the inclusion of525

tidal forces requiring a slight modification of the theory as described in appendix B. The526

resulting code can calculate the Love numbers kn, hn, and ln along with the quality fac-527

tors Qn for any spherical harmonic degree. Mean density and mean moment of inertia are528

readily obtained from integration of the density profile.529

4.4 Inverse problem530

Following our previous work, the inverse problem d = g(m) is solved using a Bayesian531

approach [e.g., Mosegaard and Tarantola, 1995]532

σ(m) = κ f (m)L(m), (30)

where κ is a normalization constant, f (m) is the prior model parameter distribution, L(m)533

is the likelihood function, and σ(m) is the posterior model parameter distribution and rep-534

resents the solution to the inverse problem. The form of L(m) is determined from data,535

their uncertainties, and data noise modelling (to be described below). To sample the poste-536

rior distribution, we employ the Metropolis algorithm, which is an importance sampling537

algorithm. This stochastic algorithm, which is based on a Markov chain Monte Carlo538

method, ensures that models that fit data (through L(m)) and are consistent with the cho-539

sen prior model parameter distribution (through f (m)) are sampled preferentially.540

As concerns the likelihood function, we assume that data noise is Gaussian dis-541

tributed and that observational uncertainties and modeling errors among the different data542

sets are independent. As a consequence, the likelihood function takes the form543

L(m) ∝
∏

i
exp

(
−
|di

obs − di
cal(m)|

2

2σ2
i

)
, (31)

where the integer i is either ρ̄, I/MR2, k2, or Q2, and dobs and dcal(m) refer to observed544

and calculated “synthetic" data, respectively, and σ is the uncertainty associated with each545

data set. For each rheological model, we sampled around 100,000 models in total and to546

ensure near-independence, every 20th model was retained for analysis. This number is547

obtained from analysising the autocorrelation of the liklihood function, which provides a548

measure of when independence between models has been achieved.549
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5 Results and discussion550

5.1 Data Fit551

Here and in the following, the main focus will be on the power-law approximation552

scheme, and the extended Burgers, Andrade, and Sundberg-Cooper rheological models;553

Maxwell’s model will be discussed separately in section 5.2.4. We make this distinction554

here based on the observation that although Maxwell’s model is capable of fitting the555

observations (not shown), this is only achievable for unrealistically low mean viscosities556

(∼1016 Pa·s, see section5.2.4). The resultant data fits are shown in Figure 5 and indicate557

that all four rheological models are capable of fitting the observations within uncertainties.558

5.2 Viscoelastic properties564

5.2.1 Grain size565

The sampled grain-size distributions for each of the rheological models is shown in566

Figure 6 and indicate that the Andrade, Sundberg-Cooper, and power-law models imply567

larger grain sizes in comparison to the predictions based on the extended Burgers model.568

The three former models suggest most probable grain sizes in the range 0.5–4 cm range,569

whereas in the case of the latter model, grain sizes are less well-resolved with a slight570

preference in the range 0.1–1 cm. Importantly, the form of the sampled grain size distribu-571

tions follows the behaviour observed in Figure 3 closely: Andrade, Sundberg-Cooper, and572

power-law models show the largest variation in the range ∼1–10 cm, while the extended573

Burgers model is relatively “flat" in the 0.1–10 cm range, in agreement with our earlier574

work [Khan et al., 2018].575

In general, grain sizes obtained in this study are larger than observed in terrestrial576

samples, where grains of submillimeter-to-millimeter size are typically found [Karato,577

1984]. Incidentally, relatively large grain sizes (∼1–10 cm) are also found in a study by578

Lau and Faul [2019], where the extended Burgers model was applied to Earth’s deep man-579

tle to model its anelastic response (see also section 5.2.2).580

In support of larger grain sizes, we showed in our previous work [Khan et al., 2018]581

how the geophysical results could be employed in tandem with geodynamic simulations to582

identify plausible geodynamic scenarios and parameters. The geodynamical models were583

generally able to reproduce the geophysically-determined areotherms, crustal thickness584

values, and grain sizes, but, in part only, lithospheric thicknesses. Grain sizes greater than585
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Parameter Andrade Extended Burgers Power-law Sundberg-Cooper

dg 0.1–2 cm 0.01–4 cm 0.1–2 cm 1–4 cm

α 0.22–0.38 0.22–0.42 0.22–0.38 0.24–0.38

-log10 (β) 12.4–13 – – 13.5–14

∆B – 1–1.5 – 1.1–1.4

A – – 0.0015–0.0025 –

Table 5. Summary of inversion results for the viscoelastic model parameters considered in this study.

Quoted ranges cover the 90% credible interval.

593

594

1 mm were mainly restricted to cases of relatively strong grain growth, which tended to586

increase internal temperature and thicken the lithosphere beyond the current geophysical587

observations.588

For brevity, inversion results for the other viscoelastic model parameters considered590

here, including frequency exponent (α), anelastic relaxation strengths (∆B and β), and591

power-law coefficient (A), are summarised in Table 5.592

5.2.2 Temperature and attenuation595

Inverted areothermal and shear attenuation (Qµ) profiles are shown in Figure 7 for596

the major rheological models considered in this study. From this figure, we can make a597

number of observations. Firstly, the obtained thermal profiles are well-constrained and598

overlap across the entire depth range. This confirms earlier investigations [Nimmo and599

Faul, 2013; Khan et al., 2018], where it was shown that global tidal dissipation provides600

strong constraints on thermal structure. Moreover, the temperature profiles are in good601

agreement with the results for the extended Burgers model of Khan et al. [2018]. Also,602

this suggests that the obtained temperature profiles are to first order independent of rhe-603

ology. Secondly, the shear attenuation profiles overlap in the upper mantle (depth range604

200–1000 km), which appears to be highly attenuating with Qµ <100, but differ in the605

lower part of the mantle (depth range 1000–1600 km), where Qµ appears to be less con-606

strained for the Andrade and extended Burgers models. Note that although the shear at-607

tenuation profiles shown in Figure 7 are computed at the main tidal period of Phobos608

(5.55 hr), shear attenuation at seismic periods (1 s) are not significantly different with Qµ609
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remaining below 100 for most of the upper part of the mantle (not shown). This suggests610

that it will be difficult to distinguish between the various rheological models based on the611

structure of the attenuation profiles. From the point of view of seismology, The implica-612

tions of this for the propagation and observation of e.g., seismic body and surface waves613

is such that their detection could be significantly impaired over regional and teleseismic614

distances. The detection of seismic events by the InSight seismometer [Lognonné, 2019]615

would therefore present a first-order test of the experimentally-constrained viscoelastic616

models considered here in the sense that seismic waves that have spent a significant part617

of their traverse in the mantle from source to station are expected to be attenuated.618

5.2.3 Predicted short- and long-period planetary response619

What the previous discussion suggests is that from knowledge of dissipation at a620

single frequency (here the main tidal period of Phobos), it appears to be difficult to dis-621

tinguish between rheological models. If, however, we know the tidal response at other622

frequencies, more precise arguments can be made about both interior dissipative proper-623

ties and corresponding rheological models as illustrated in Figure 8 [see also Lognonné624

et al., 1996; Van Hoolst et al., 2003; Zharkov and Gudkova, 2005; Smrekar et al., 2019].625

Figure 8 shows the predicted probability distributions for k2 and Q2 at three different peri-626

ods: short- (1 s) and long-period (1 hr) seismic waves, and at the main Solar tide on Mars627

(12.32 hr) computed for all the inverted models. First off, relative differences in computed628

k2 distributions for the three different periods for a particular rheological model are mi-629

nor and cover a similar range ∼0.16–0.18 across all rheologicalthe models. In the case of630

Q2, however, the distinction within and between models is significantly more pronounced.631

Although all four rheological models match the only existing observation of Q2 at 5.55632

hours (Figure 5), they differ in their prediction for Q2 at the other periods. In particular,633

similar behaviour for the Andrade and power-law models, on the one hand, and the ex-634

tended Burgers and Sundberg-Cooper models, on the other hand, is observed. This “pair-635

ing" clearly reflects the common underlying mechanisms that exists between the models.636

For example, higher dissipation (lower Q2) at higher frequencies observed for the former637

two models (Figure 8c–d and g–h) is attributed to the presence of the extra dissipation638

peak, which tends to flatten the Qµ curves and, as a result, prevents a dramatic increase639

of attenuation at short time-scales. In contrast, since the frequency-dependent absorption640

band extends throughout the entire spectrum in the case of Andrade and the power-law641
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scheme, low attenuation (high Q2) at high frequencies ensues (Figure 8a–b and e–f). Note642

that, although intrinsic attenuation (Qµ) plays a key role in determining the tidal quality643

factor (Q2), they are not the same. As emphasised, the discrepancy is due to the role of644

the restoring force of gravity, which increases in importance with increasing forcing pe-645

riod, but is less relevant in the case of seismic waves. Clearly, observations of dissipation646

at other periods, hold the potential of strongly constraining the anelastic structure.647

This is further quantified in Figure 9, which shows the degree-two global response648

of Mars in the form of k2, Q2, and δ2 over a much larger period range (∼1 s–10 yr) for649

a single inverted model (maximum likelihood model for each rheology). The Q2 response650

behaviour (Figure 9b) for the Andrade and power-law models appears to be dominated by651

the absorption band with a negative period-dependence, which, in the case of Andrade,652

slowly transitions into viscous dissipation for periods >1 month up until a peak value is653

reached (not shown) after which friction occurs purely viscously [see also discussion in654

Efroimsky, 2012a]. As expected, the power-law scheme fails to propose realistic values655

of Q2 at long periods (Figure 9b), which indicates that the Chandler wobble analysis by656

Zharkov and Gudkova [2009] (with a period of ∼200 days) that relies on this particular657

rheological model needs to be reassessed.658

In comparison, the response of the extended Burgers and Sundberg-Cooper models659

is more complex with a broad plateau extending from the seismic into the tidal range that660

merges into the absorption band with negative frequency dependence (note that the slopes661

determined by α, i.e., the frequency exponent, between the red and black lines are differ-662

ent because the inverted values for α differ for the two models). On the smaller-period663

side of the plateau, dissipation varies with a positive frequency-dependence, whereas to-664

ward the long-period end of the response curves (>2 yr), purely viscous dissipation pre-665

dominates. For the particular models shown here, Phobos’ tide falls in the absorption666

band in the case of the extended Burgers model, but appears within transition the plateau667

and the absorption band in the Sundberg-Cooper model. It has to be emphasised though668

that the relative location of the various features that dominate dissipation at different time-669

scales (see section 2.1) are not well-constrained from the observation at a single period.670

In summary, this figure serves to indicate that the predicted response behaviour is such671

that from comparison of a single measurement by InSight of Q2 above or below and/or k2672

below the main tidal period of Phobos, strong constraints on interior structure and dissipa-673

tive properties can be obtained.674
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This has been discussed in terrestrial and lunar studies, where data at different pe-675

riods are available [e.g., Benjamin et al., 2006; Nimmo et al., 2012; Efroimsky, 2012a;676

Karato, 2013; Williams and Boggs, 2015; Lau and Faul, 2019]. For example, Lau and Faul677

[2019] considered seismic normal mode and short- and long-period tidal dissipation mea-678

surements for the Earth in an attempt to reconcile the anelastic response of the deep man-679

tle across timescales from ∼500 s to 18.6 yr. As briefly indicated earlier, the authors use680

the extended Burgers model and vary a number of parameters related hereto (e.g., grain681

size, anelastic relaxation strengths, activation energy and volume, and mantle potential682

temperature). The authors find that two different frequency dependencies are needed to683

fit normal mode and tide data. Qualitatively, the authors observe the same anelastic be-684

haviour discussed in relation to the extended Burgers model investigated here (red line in685

Figure 9), including the presence of a plateau that determines dissipation for periods be-686

low ∼12 hr and an absorption band above, extending to ∼20 yr without clear indication687

of onset of viscous dissipation. As is the case for our models, the exact occurence of the688

various characteristics (e.g., plateau, transition to absorption band, and α) is less well-689

constrained.690

Finally, we have made model predictions by computing responses at four periods691

(1 s, 1 hr, 5.55 hr, and 12.32 hr) for all Love numbers (kn, hn, and ln), gravimetric factors692

δn, and quality factors Qn, for the maximum likelihood models of each rheology and for693

n=2–5. The results are compiled in Table 6. The absolute value of Qn decreases, i.e., dis-694

sipation increases, as n becomes larger. This reflects an increased sensitivity to shallower695

structure, which implies that more of the dissipative part of the planet (mantle) is “seen"696

with increased spherical harmonic degree. The values obtained here are in good agree-697

ment with model predictions made elsewhere [e.g., Van Hoolst et al., 2003; Zharkov and698

Gudkova, 1997, 2005, 2009]. Based on the observed variation in predicted model values699

(Figure 9), the phase lags Qn are likely to be much better at discriminating between dif-700

ferent models than are the gravimetric factors δn. This important finding can be examined701

by the measurements of dissipation provided by both RISE and SEIS. Although beyond702

the scope of this study, knowledge of higher-degree harmonics are important for model-703

ing e.g., the orbital evolution and future demise of Phobos [Burns, 1978; Efroimsky and704

Lainey, 2007; Black and Mittal, 2015; Rosenblatt et al., 2016].705
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5.2.4 Maxwell’s Model724

While Maxwell’s model, in spite of its simplicity, is capable of fitting data within725

uncertainties (not shown in Figure 5) for interior structure models that match the results726

of the other models (see Table 7), this is only possible for very low average viscosities727

(∼2·1016 Pa·s) that are well below what is expected for the viscosity of the upper mantle728

of the Earth (1019–1022 Pa.s) [e.g., Peltier, 1974; Forte and Mitrovica, 2001; Soldati et al.,729

2009; Cathles, 2015] and therefore probably unrealistic.730

Low mantle viscosities have also been obtained in previous studies [e.g., Bills et al.,731

2005], where Maxwell’s model was applied to estimate the tidal response of Mars. For732

a homogeneous solid model of Mars, Bills et al. [2005] found an average viscosity of733

∼1015 Pa·s. Bills et al. [2005] argued that the presence of a liquid core could provide a734

possible explanation for the low viscosity, but the modeling results based on Maxwell pre-735

sented here invalidate this inasmuch as a model including a fully liquid core still results in736

a low average viscosity. We attribute the unrealistically low viscosity values obtained from737

Maxwell’s model to its shortcoming, particularly lack of an intermediate-stage anelastic738

transient response as also observed elsewhere [e.g., Castillo-Rogez and Banerdt, 2012]. In739

this context, Castillo-Rogez and Banerdt [2012] found that anelastic transient relaxation740

processes are required to properly account for Mars’s high tidal dissipation. Consider-741

ing an Andrade rheology and a Mars model with fluid-outer and solid-inner core radii of742

1700 km and 1100 km, respectively, they obtained more “realistic" mantle viscosities of743

1019–1022 Pa·s depending on the assumed value for α (higher α results in lower η).744

5.3 Interior structure745

Since this study focuses on modeling and understanding the anelastic response of746

Mars at tidal and seismic frequencies, we only briefly summarise the results on interior747

structure. Inverted model parameters are presented in Table 7 and profiles of P- and S-748

wave speed and density are shown in Figure C.1. While the results for the viscoelastic749

models largely overlap, it is more difficult to use the results as a means of distinguishing750

between rheological models with the exception of Maxwell’s model. Not unsurprisingly,751

the results are in good agreement with those of our previous work [Khan et al., 2018],752

where the influence of compositional parameters was considered in detail in the context of753

an extended Burgers viscoelastic model. Here as there, models imply relatively large cores754

(∼1750–1850 km in radius) with a significant complement of S (∼17–20 wt%). As the755
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core S content found here is close to the eutectic composition and core-mantle-boundary756

temperatures and pressures are in excess of 1800 K and ∼19–20 GPa, respectively, a solid757

inner core is unlikely to be present [e.g., Stewart et al., 2007; Helffrich, 2017]. More-758

over, a large core implies that the counterpart of a terrestrial bridgmanite-dominated lower759

mantle in Mars is unlikely to be present with potentially important implications for the760

dynamic evolution of Mars’s mantle [e.g., Breuer et al., 1997; van Thienen et al., 2006;761

Ruedas et al., 2013]. For further discussion of interior structure, we refer the reader to762

previous work [e.g., Rivoldini et al., 2011; Nimmo and Faul, 2013; Plesa et al., 2016; Khan763

et al., 2018; Smrekar et al., 2019].764

6 Discussion and Conclusion765

In this study, we have examined the geophysical implications of a series of grain-766

size-, temperature- and frequency-dependent laboratory-based viscoelastic models. These767

models have been developed in an attempt to describe dissipative properties of planetary768

materials on the macroscopic scale in terms of interactions that occur on the microscopic769

scale, i.e., on the level of atoms and grains. The rheological models are based on defor-770

mation experiments of melt-free polycrystalline olivine and an olivine-pyroxene mixture,771

respectively, and include Maxwell, Andrade, extended Burgers, Sundberg-Cooper, and a772

power-law scheme.773

We combined the viscoelastic models with phase equilibrium computations to al-774

low for self-consistently constructed models of seismic elastic and anelastic properties775

and tested the resultant models against global geophysical observations for Mars. All of776

the models were found to be able to match the Martian observations including tidal re-777

sponse (amplitude and phase) and mean mass and moment of inertia. The simplest of the778

investigated rheological models, that of Maxwell, whose response only consists of a purely779

elastic and a viscous component, only matched the observations for very low viscosities780

(∼1016 Pa·s). This observation is in accord with previous work, where similar results were781

obtained. Based on the observation that the main tidal periods of most solar system ob-782

jects are to be found in the transient period range where Maxwell is singularly deficient,783

it appears reasonable to conclude that Maxwell’s model should be abandoned in favour of784

more realistic models such as Andrade, extended Burgers, or Sundberg-Cooper. These785

models represent improvements relative to Maxwell inasmuch as these models include786
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an anelastic transient regime that allows for generating significant dissipation in the main787

tidal period range.788

Of the other models investigated, all converged upon the same results in terms of in-789

terior structure parameters, i.e., the results are to first order insensitive of the exact nature790

of the attenuation mechanisms that account for dissipation of energy in planetary interi-791

ors. While we only examined a single frequency associated with the main tide of Phobos,792

our results show that from knowledge of the response at an additional period, significantly793

improved constraints on interior properties can be derived. InSight observations of tidal794

phase lags will prove particularly rewarding since these appear to be a much better means795

of discriminating between different models than either tidal amplitudes or induced surface796

displacements.797

As shown here, application of our method yields a host of quantitative predictions798

and results. In particular, the method also provides insights into future requirements of,799

e.g., improvements in experimental data, that will be needed for modeling more complex800

models. Chief among these are (more discussion is given in Nimmo and Faul [2013] and801

Khan et al. [2018]): a) extending the forced torsional oscillation experiments to minerals802

beyond olivine, including compositions that are more Fe-rich and therefore more represen-803

tative of Martian mantle compositions; b) extending the experimental conditions to longer804

periods; c) consideration of the effects of hydration and partial melt, which can signif-805

icantly impact viscosity by lowering it and thereby increase dissipation [Jackson et al.,806

2004; Karato, 2013; Takei, 2017; Cline II et al., 2018]; and d) including grain-size varia-807

tion with depth in view of geodynamic models that show evidence for grain growth with808

depth [e.g., Rozel, 2012], which would tend to lower dissipation, requiring increased dissi-809

pation elsewhere.810

For community use, we computed and tabulated predicted model responses (Love811

numbers and attenuation) at a number of distinct periods and spherical harmonic degree812

for each of the rheological models considered here. Since the amount of energy that is be-813

ing dissipated in planetary interiors depends on rheology, the latter effectively controls the814

orbital evolution of binaries such as Mars and Phobos and therefore provides an improved815

means for e.g., understanding the future demise of Phobos. Penultimately, we should note816

that while the results of this study are based on Mars, the methodology is generally appli-817

cable to other terrestrial planets and exoplanets.818
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Ultimately, it is the expectation that InSight, which has been operative on the sur-819

face of Mars since the end of November 2018, will enable separate measurements of k2,820

Q2, and δ2 (and maybe k3 and δ3). More specifically, and in addition to the direct mea-821

surement of the tidal response by RISE, different schemes have been proposed to employ822

the SEIS instrument to extract the tidal response from the seismic data, by having the very823

broad-band seismometer act as a gravimeter to measure Mars’s response to tidal forces824

[Pou et al., 2018].825

As a final remark, we would like to note that although we have focused on Mars, the826

methodology developed here is generally formulated and therefore applicable to other solar827

and extra-solar system bodies, where tidal constraints are available to determine interior828

structure and properties. In particular, we envision applying our method to the Moon for829

which tidal dissipation measurements at several periods are available.830

A: Viscoelastic parameters831

Table A.1 compiles the viscoelastic parameter values used throughout this study.832

B: Further details about tidal calculations838

To model tidal deformation within the planet, we make use of the quasi-static mo-839

mentum equation [e.g., Dahlen, 1974; Tromp and Mitrovica, 1999; Al-Attar and Tromp,840

2014]841

−∇ · T + ∇(ρu · ∇Φ) − ∇ · (ρu)∇Φ + ρ∇(φ + ψ) = 0, (B.1)

where T denotes the incremental Lagrangian-Cauchy stress tensor, ρ the equilibrium den-842

sity, u the displacement vector, Φ the equilibrium gravitational potential, φ the perturbed843

gravitational potential, and ψ is the tidal potential that we have now added into the prob-844

lem. The sign conventions used in this section follow those in Al-Attar and Tromp [2014].845

The tidal potential is assumed to have an exponential time-dependence at a given forcing846

frequency. Due to the linearity of the equations of motion, the displacement and grav-847

itational potential have the time-dependence, and the common exponential factors have848

been canceled from all equations. The frequency-dependence within the problem then849

arises solely from the fact that the appropriate viscoelastic modulii are evaluated at the850

prescribed tidal frequency.851

As shown by Dahlen [1974], for static or quasi-static problems this linearised La-852

grangian description is only valid within solid parts of the Earth model. Within the fluid853
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core, the displacement vector is not well-defined, and Dahlen [1974] instead showed that854

all relevant fields can be expressed in terms of the perturbed gravitational potential φ. In855

particular, we can write the first-order perturbations to density ρ′ and pressure p′ in the856

fluid core as857

p′ = −ρ(φ + ψ), ρ′ = g−1∂r ρ(φ + ψ), (B.2)

where g = ∂rΦ. These identities generalise those presented in Dahlen [1974] to include858

the applied tidal potential, but their derivation is essentially unchanged. The gravitational859

potential perturbation itself is then a solution of the following modified Poisson equation860

(4πG)−1∇2φ =


−∇ · (ρu) in solid regions

g−1∂r ρ(φ + ψ) in fluid regions

0 outside the planet

(B.3)

where G is Newton’s gravitational constant. The boundary and continuity conditions for861

the problem can be found in detail in Al-Attar and Tromp [2014]. Within the tidal prob-862

lem, however, there is no applied surface load, while the tidal potential ψ appears within863

the continuity conditions on the linearised traction across fluid-solid boundaries via its oc-864

currence in the pressure perturbation p′ in fluid regions.865

For numerical work, it is most convenient to express the problem in its weak form.866

The derivation follows closely that given in Al-Attar and Tromp [2014], requiring only867

slight changes due to the inclusion of the tidal potential in the momentum equation, the868

modified Possion equation, and in the traction boundary conditions at fluid-solid bound-869

aries. The final result is given by870

A(u, φ | u′, φ′) +
∫
MS

ρ∇ψ · u′ dV +
∫
MF

g−1∂r ρψφ
′ dV

+

∫
ΣFS

ρ−ψu′ · n̂ dS −
∫
ΣSF

ρ+ψu′ · n̂ dS = 0, (B.4)

where A is the bilinear form defined in eq.(2.52) of Al-Attar and Tromp [2014], (u′, φ′)871

are test functions for the displacement and potential, respectively, MS denotes the solid872

regions of the model, MF the fluid regions, ΣFS and ΣSF denote the fluid-solid bound-873

aries, where the first subscript indicates whether the region on the inside of the boundary874

is solid (S) or fluid (F), and finally ρ− and ρ+ denote, respectively the equilibrium density875

evaluated on the lower or upper sides of a boundary. As the tidal potential only modifies876

the force term for the problem, the numerical implementation was readily made within877

the loading code developed by Al-Attar and Tromp [2014], which has been subsequently878

refined and improved by Crawford et al. [2018].879
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C: Seismic wave speed and density profiles880

Figure C.1 shows sampled P- and S-wave speed and density profiles from the sur-881

face to the centre of Mars for each of the rheological models considered here. As the882

figures also shows, the particular choice of rheological model does not appear to make a883

substantial difference, since the solutions for the various viscoelastic models largely over-884

lap. In the context of investigating the influence of compositional variations, [Khan et al.,885

2018] examined four other bulk Martian compositions (Sanloup et al. [1999], Lodders and886

Fegley [1997], Dreibus and Wänke [1984], Morgan and Anders [1979]) that resulted in887

models that are consistent with the present results (see also section 5.3).888
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Figure 3. Computed variations of relaxed shear modulus (GR) and shear attenuation (Qµ) with period,

temperature, and grain size for the five rheological models considered in this study. (a, b) GR and Qµ as a

function of period at constant temperature and grain size, The vertical lines show periods of interest: seismic

body waves (1 s), normal modes (1 hr), main tidal excitation of Phobos (5.55 hr), and main tidal excitation

of the Sun (12.32 hr). (c, d) GR and Qµ as a function of temperature at constant period and grain size, (e, f)

GR and Qµ as a function of grain size at constant period and temperature. Light and dark shaded areas denote

the ranges covered by the experimental measurements of Jackson and Faul [2010] and Sundberg and Cooper

[2010], respectively. All curves were produced at a constant pressure of 10.4 GPa and for an unrelaxed shear

modulus of 65 GPa. Viscoelastic parameter values employed are given in Table A.1 and d
′=1 m.
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Crust:
crustal thickness (dcrust)
surface porosity ( )
surface temperature (Tsurf )

Lithosphere:
lithospheric depth (dlit)
lithospheric temperature (Tlit)
Mantle:
composition (Xm)
viscoelastic parameters:
grain size (dg)
frequency exponent ( )
anelastic relaxation (Δ, A)
Core:
radius (rcore)
sulfur content (XS)

Figure 4. Schematic diagram illustrating model parameterization. The model is spherically symmetric and

divided into crust, lithosphere, mantle, and core. These fours layers are parameterized using the parameters

shown in the boxes on the right. For more details see main text (section 4.1).
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second-degree tidal Love number k2; b) second-degree global tidal dissipation Q2; c) mean density ρ̄; and

d) mean moment of inertia I/MR2. The results shown in (a) and (b) refer to the main tidal period of Phobos.

The vertical solid lines indicate observed values of k2, Q2, ρ̄, and I/MR2. Observations and uncertainties are

compiled in table 1.
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Figure 7. Inverted areothermal (a) and shear attenuation (b) profiles for the main viscoelastic models con-

sidered in this study (at the main tidal period of Phobos). Shear attenuation models are only shown down to

the core-mantle-boundary since the core is fluid (Qµ=0).
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Figure 8. Sampled distributions of second-degree tidal Love number k2 and quality factor Q2 at three

different periods of geophysical interest for each rheological model: a-b) Andrade, c-d) extended Burgers,

e-f) power-law, and g-h) Sundberg-Cooper. Note that because of the large variation in Q2 for the Andrade

and power-law models, plots b) and f) are shown in terms of Log10(Q2). The distributions represent predic-

tions based on the observed 5.55-hr main Phobos tide. The periods considered are: 12.32 hr (solar tide), 1 hr

(long-period normal modes), and 1 s (short-period body waves).
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Figure 9. Computed tidal response of Mars as a function of period from short-period seismic (1 s) to long-

period tidal time scales (∼10 yr) for the four major rheological models considered in this study. a) Amplitude

of tidal response (real part of second-degree potential Love number k2), b) second-degree global tidal quality

factor (Q2), and c) gravimetric factor (δ2). The response curves were computed using the maximum like-

lihood model obtained in the inversion and the viscoelastic parameters compiled in the Table A.1 for each

rheology.
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Parameter Value Unit Viscoelastic model

β 3.2·10−13 Pa−1 s−0.33 A

β 0.5·10−13 Pa−1 s−0.33 SC

∆B 1.4 – ExtB, SC

α 0.33 – all

A 0.002 s−0.33 PL

d0 13.4 µm all

P0 0.2 GPa all

T0 1173 K all

τL0 10−3 s ExtB, SC

τH0 107 s ExtB, SC

τM0 107.48 s all

τP0 10−3.4 s ExtB, SC

∆P 0.057 – ExtB, SC

mga 1.3 – A, M, ExtB, SC

mgv 3 – A, M, ExtB, SC

V∗ 10−5 m3/mol all

E∗ 360 kJ/mol all

∂G/∂P 1.8 – all

∂G/∂T -13.6 MPa/K all

σ 4 – ExtB, SC

Table A.1. Compilation of viscoelastic parameters used in this study. Abbreviations are: A–Andrade;

ExtB–extended Burgers; M–Maxwell; PL–power-law; SC–Sundberg-Cooper. The values of ∂G/∂P and

∂G/∂T are only employed for creating the models discussed in section 2.3. All parameter values used are

from Jackson and Faul [2010], except for β and A (SC and PL), which are based on forward model runs such

that the modeled Qµ and GR (shown in Figure 3) among the various rheologies have comparable amplitudes.
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Figure C.1. Inverted seismic wave speed and density profiles obtained for each of the rheological models.

a) P-wave speed (VP), b) S-wave speed (VS), and c) density (ρ).
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