39 research outputs found

    In vitro evaluation of the precision of working casts for implant-supported restoration with multiple abutments

    Get PDF
    OBJECTIVE: The purpose of this study was to compare the accuracy of two working cast fabrication techniques using strain-gauge analysis. METHODS: Two working cast fabrication methods were evaluated. Based on a master model, 20 working casts were fabricated by means of an indirect impression technique using polyether after splinting the square transfer copings with acrylic resin. Specimens were assigned to 2 groups (n=10): Group A (GA): type IV dental stone was poured around the abutment analogs in the conventional way; Group B (GB), the dental stone was poured in two stages. Spacers were used over the abutment analogs (rubber tubes) and type IV dental stone was poured around the abutment analogs in the conventional way. After the stone had hardened completely, the spacers were removed and more stone was inserted in the spaces created. Six strain-gauges (Excel Ltd.), positioned in a cast bar, which was dimensionally accurate (perfect fit) to the master model, recorded the microstrains generated by each specimen. Data were analyzed statistically by the variance analysis (ANOVA) and Tukey's test (α= 5%). RESULTS: The microstrain values (µepsilon) were (mean±SD): GA: 263.7±109.07µepsilon, and GB: 193.73±78.83µepsilon. CONCLUSION: There was no statistical difference between the two methods studied

    Cytogenetic markers as diagnoses in the identification of the hybrid between Piauçu (Leporinus macrocephalus) and Piapara (Leporinus elongatus)

    Get PDF
    The genetic monitoring of interspecific hybrids involves the application of methodologies able to provide an easy and indubitable genetic characterization of both parental and hybrid individuals. In the present work, cytogenetic techniques were used to identify a hybrid lineage of Piaupara in order to caracterize them in relation to the parental species, Leporinus macrocephalus (piauçu) and L. elongatus (piapara). The cytogenetic analysis revealed that L. macrocephalus presented 2n = 54 chromosomes and a nucleolar organizer regions (NOR) at the telomere of the long arm of the submetacentric chromosome pair 2. Analysis of constitutive heterochromatin (C-banding) revealed a conspicuous block at the pericentromeric region on the long arm of a submetacentric chromosome pair. L. elongatus presented the same diploid number, 2n = 54, and a karyotypic formula similar to that of L. macrocephalus. The NORs were also at the telomere of the long arm of the submetacentric pair 2, which was morphologically different from that of L. macrocephalus. Heterochromatic blocks were observed at both telomeres of a submetacentric chromosome pair. The hybrid Piaupara presented the same diploid number (2n = 54) and karyotypic formula as the parental species and there were no visible differences between parental and hybrid individuals. Differently from the Giemsa staining, NOR- and C-banding analysis showed marked differences which allowed the identification of the hybrids by the different morphology and/or size of the chromosomes carrying the NORs and patterns of heterochromatin distribution in their chromosomes. Such genetic studies are important for fish culture since they can provide tools for monitoring natural and artificial hybridization. They are also useful in biological conservation programmes and in the proper management of natural and reared fish stocks.195202Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore