450 research outputs found
Acute Myeloid Leukemia: Focus on Novel Therapeutic Strategies
Acute myeloid leukemia (AML) is a heterogeneous disease with variable clinical outcomes. Cytogenetic analysis reveals which patients may have favorable risk disease, but 5-year survival in this category is only approximately 60%, with intermediate and poor risk groups faring far worse. Advances in our understanding of the biology of leukemia pathogenesis and prognosis have not been matched with clinical improvements. Unsatisfactory outcomes persist for the majority of patients with AML, particularly the elderly. Novel agents and treatment approaches are needed in the induction, post-remission and relapsed settings. The additions of clofarabine for relapsed or refractory disease and the hypomethylating agents represent recent advances. Clinical trials of FLT3 inhibitors have yielded disappointing results to date, with ongoing collaborations attempting to identify the optimal role for these agents. Potential leukemia stem cell targeted therapies and treatments in the setting of minimal residual disease are also under investigation. In this review, we will discuss recent advances in AML treatment and novel therapeutic strategies
Unilateral thalamic infarction presenting as vertical gaze palsy: a case report
<p>Abstract</p> <p>Introduction</p> <p>Vertical gaze palsy is a recognized manifestation of midbrain lesions. It rarely is a consequence of unilateral thalamic infarction.</p> <p>Case presentation</p> <p>We report the case of a 48-year-old African-American woman who presented to our facility with vertical gaze palsy and evidence of left medial thalamic infarct on diffusion-weighted imaging without coexisting midbrain ischemia. The etiology of infarct was determined to be small vessel disease after extensive investigation.</p> <p>Conclusions</p> <p>This report suggests a possible role of the thalamus as a vertical gaze control center. Clinicoradiological studies are needed to further define the role of the thalamus in vertical gaze control.</p
Vitamin D Receptor Controls Cell Stemness in Acute Myeloid Leukemia and in Normal Bone Marrow.
Vitamin D (VD) is a known differentiating agent, but the role of VD receptor (VDR) is still incompletely described in acute myeloid leukemia (AML), whose treatment is based mostly on antimitotic chemotherapy. Here, we present an unexpected role of VDR in normal hematopoiesis and in leukemogenesis. Limited VDR expression is associated with impaired myeloid progenitor differentiation and is a new prognostic factor in AML. In mice, the lack of Vdr results in increased numbers of hematopoietic and leukemia stem cells and quiescent hematopoietic stem cells. In addition, malignant transformation of Vdr-/- cells results in myeloid differentiation block and increases self-renewal. Vdr promoter is methylated in AML as in CD34+ cells, and demethylating agents induce VDR expression. Association of VDR agonists with hypomethylating agents promotes leukemia stem cell exhaustion and decreases tumor burden in AML mouse models. Thus, Vdr functions as a regulator of stem cell homeostasis and leukemic propagation
FDG-PET/CT in infections: the imaging method of choice?
[No abstract available
The blind men and the AML elephant:can we feel the progress?
The pharmacological therapy of non-promyelocytic acute myeloid leukemia (AML) has remained unchanged for over 40 years with an anthracycline–cytarabine combination forming the backbone of induction treatments. Nevertheless, the survival of younger patients has increased due to improved management of the toxicity of therapies including stem cell transplantation. Older patients and those with infirmity that precludes treatment-intensification have, however, not benefited from improvements in supportive care and continue to experience poor outcomes. An increased understanding of the genomic heterogeneity of AML raises the possibility of treatment-stratification to improve prognosis. Thus, efforts to identify agents with non-conventional anti-leukemic effects have paralleled those aiming to optimize leukemia cell-kill with conventional chemotherapy, resulting in a number of randomized controlled trials (RCT). In the last 18 months, RCTs investigating the effects of vosaroxin, azacitidine and gemtuzumab ozogamycin and daunorubicin dose have been reported with some studies indicating a statistically significant survival benefit with the investigational agent compared with standard therapy and potentially, a new era in AML therapeutics. Given the increasing costs of cancer care, a review of these studies, with particular attention to the magnitude of clinical benefit with the newer agents would be useful, especially for physicians treating patients in single-payer health systems
New England Medical Center Posterior Circulation Stroke Registry: I. Methods, Data Base, Distribution of Brain Lesions, Stroke Mechanisms, and Outcomes
Among 407 New England Medical Center Posterior Circulation Registry (NEMC-PCR) patients, 59% had strokes without transient ischemic attacks (TIAs), 24% had TIAs before strokes, and 16% had only posterior circulation TIAs. Embolism was the commonest stroke mechanism accounting for 40% of cases (24% cardiac origin, 14% arterial origin, 2% had potential cardiac and arterial sources). In 32%, large artery occlusive lesions caused hemodynamic brain infarction. Stroke mechanisms in the posterior and anterior circulation are very similar. Infarcts most often included the distal posterior circulation territory (rostral brainstem, superior cerebellum and occipital and temporal lobes), while the proximal (medulla and posterior inferior cerebellum) and middle (pons and anterior inferior cerebellum) territories were equally involved. Infarcts that included the distal territory were twice as common as those that included the proximal or middle territories. Most distal territory infarcts were attributable to embolism. Thirty day mortality was low (3.6%). Embolic stroke mechanism, distal territory location, and basilar artery occlusive disease conveyed the worst prognosis
Management of acute promyelocytic leukemia: Recommendations from an expert panel on behalf of the European LeukemiaNet
The introduction of all-trans retinoic acid (ATRA) and, more recently, arsenic trioxide (ATO) into the therapy of acute promyelocytic leukemia (APL) has revolutionized the management and outcome of this disease. Several treatment strategies using these agents, usually in combination with chemotherapy, but also without or with minimal use of cytotoxic agents, have provided excellent therapeutic results. Cure of APL patients, however, is also dependent on peculiar aspects related to the management and supportive measures that are crucial to counteract life-threatening complications associated with the disease biology and molecularly targeted treatment. The European LeukemiaNet recently appointed an international panel of experts to develop evidence- and expert opinion-based guidelines on the diagnosis and management of APL. Together with providing current indications on genetic diagnosis, modern risk-adapted front-line therapy and salvage treatment, the review contains specific recommendations for the ide
Transcriptional repression of the human collagenase-1 (MMP-1) gene in MDA231 breast cancer cells by all-trans-retinoic acid requires distal regions of the promoter
In the present study, we investigated the mechanisms controlling constitutive transcription of collagenase-1 and its repression by all-trans-retinoic acid (RA) in the highly invasive metastatic and oestrogen-receptor-negative breast cancer cell line MDA231. A combination of in vivo and in vitro experiments that include DNAase I hypersensitivity assays, transient transfection of collagenase-1 promoter constructs, and electrophoretic mobility shift assays implicate several PEA3 sites, binding sites for Ets-related transcription factors, in the constitutive expression of the human collagenase-1 promoter. Transient transfection of promoter constructs linked to the luciferase reporter, along with gel retardation assays, revealed that repression of collagenase-1 transcription by RA is not dependent on the proximal AP-1 site, but, rather, requires sequences located in distal regions of the promoter. Transcriptional analyses and electrophoretic mobility shift assays suggest that the PEA3 site located at –3108 bp facilitates, at least in part, the transcriptional repression of the human collagenase-1 gene in MDA231 cells. We conclude that collagenase-1 repression in MDA231 cells occurs by a novel regulatory pathway that does not depend on the proximal AP-1 site at –73 bp, but does depend on distal regions in the collagenase-1 promoter. © 1999 Cancer Research Campaig
- …