172 research outputs found

    Water Absorption Properties of Cement Pastes: Experimental and Modelling Inspections

    Get PDF
    An intermingled fractal units’ model is shown in order to simulate pore microstructures as pore fraction and pore size distribution. This model is aimed at predicting capillary water absorption coefficient and sorptivity values in cement pastes. The results obtained are in good agreement with the experimental ones. For validating this model, a comparison with other procedures has been shown. It is possible to establish that the newly proposed method matches better with the experimental results. That is probably due to the fact that pore size distribution has been considered as a whole. Moreover, even though the proposed model is based on fractal base units, it is able to simulate and predict different properties as well as nonfractal porous microstructure

    Pore Size Distribution Influence on Suction Properties of Calcareous Stones in Cultural Heritage: Experimental Data and Model Predictions

    Get PDF
    Water sorptivity symbolises an important property associated with the preservation of porous construction materials. The water movement into the microstructure is responsible for deterioration of different types of materials and consequently for the indoor comfort worsening. In this context, experimental sorptivity tests are incompatible, because they require large quantities of materials in order to statistically validate the results. Owing to these reasons, the development of analytical procedure for indirect sorptivity valuation from MIP data would be highly beneficial. In this work, an Intermingled Fractal Units' model has been proposed to evaluate sorptivity coefficient of calcareous stones, mostly used in historical buildings of Cagliari, Sardinia. The results are compared with experimental data as well as with other two models found in the literature. IFU model better fits experimental data than the other two models, and it represents an important tool for estimating service life of porous building materials

    Influenza della porositĂ  sulle proprietĂ  dei materiali. Un approccio fenomenologico basato sulla geometria frattale

    Get PDF
    In this thesis, the correlation between microstructure and properties of porous materials is analysed using Fractal Geometry. In particular, the effect of pore size distribution in fluid transport, thermal conductivity and some mechanical properties is studied. Materials used in cultural heritage, contemporary architecture and industrial engineering such as limestone, earth based materials, traditional ceramics, advanced ceramics (zirconia and alumina) and binder have been examined. The porosimetry experimental data has been acquired by mercury intrusion technique. In this research, a model based on fractal of Sierpinski carpet is used. By mixing fractal units with different dimension and configuration, it was possible to create a microstructure of material similar to experimental. Some fractal analytical procedures have been developed to predict thermal conductivity, sorptivity, water vapour permeability and elastic modulus. The data obtained by fractal model has been compared with experimental data. The results obtained are quite close to experimental ones and it has been revealed that this procedure is more effective than other model proposed in the recent literature

    Coating's influence on wind erosion of porous stones used in the Cultural Heritage of Southern Italy: Surface characterisation and resistance

    Get PDF
    Wind erosion (or aeolian corrosion) is one of the most relevant causes of weathering and degradation which has affected building surfaces in Cultural Heritage. The effect depends on the wind strength, the impact of particles transported and their size and the characteristics of surfaces affected. This aspect is very important for historical buildings constructed by using limestone as Lecce stone (LS). LS has an extraordinary ability to be shaped, but is very sensitive to decay. Exfoliation, wind erosion, absorption of water by capillary from the soil, are its main degradation causes. For such a reason, the application of effective products able to act as “sacrifice film” became necessary in order to minimise the degradation rate by preserving the limestone substrate against serious weathering agents. In this work, the effects of aeolian corrosion, simulated by means the accelerated test with sandblasting method, were studied. In particular, the effectiveness of two specific commercial coatings, such as an innovative free-solvent hybrid organic-inorganic coating (HYBRID) and a solvent-based coating (AS), was assessed relating to their capability to preserve Lecce stone from the aeolian corrosion phenomenon. The protective efficacy was guaranteed by both the commercial coatings even after accelerated wind erosion test, by confirming a high hydrophobicity, low capillary water absorption and an adequate depth of penetration inside the stone able to assure durability

    Application of a Novel Method for a Simulation of Conductivity of a Building Material in a Climatic Chamber

    Get PDF
    This work proposes the application of a new simulation method based on fractal geometry for the calculation of the thermal conductivity for building materials. The results obtained are compared with the measurement, in a climatic chamber, of the heat flow through a material chosen as the sample. The test sample is made with “pietracantone”, a stone widely used as a building material and as an ornamental stone in the areas of Cagliari and Sassari in Sardinia. This material is characterized by a limestone matrix and a porosity which significantly influences the value of thermal conductivity. It is not known to the authors that this material had already been studied for its thermal propertie

    c-MYC amplification and c-myc protein expression in pancreatic acinar cell carcinomas. New insights into the molecular signature of these rare cancers.

    Get PDF
    The molecular alterations of pancreatic acinar cell carcinomas (ACCs) and mixed acinar-neuroendocrine carcinomas (MANECs) are not completely understood, and the possible role of c-MYC amplification in tumor development, progression, and prognosis is not known. We have investigated c-MYC gene amplification in a series of 35 ACCs and 4 MANECs to evaluate its frequency and a possible prognostic role. Gene amplification was investigated using interphasic fluorescence in situ hybridization analysis simultaneously hybridizing c-MYC and the centromere of chromosome 8 probes. Protein expression was immunohistochemically investigated using a specific monoclonal anti-c-myc antibody. Twenty cases had clones with different polysomies of chromosome 8 in absence of c-MYC amplification, and 5 cases had one amplified clone and other clones with chromosome 8 polysomy, while the remaining 14 cases were diploid for chromosome 8 and lacked c-MYC amplification. All MANECs showed c-MYC amplification and/or polysomy which were observed in 54% pure ACCs. Six cases (15.3%) showed nuclear immunoreactivity for c-myc, but only 4/39 cases showed simultaneous c-MYC amplification/polysomy and nuclear protein expression. c-myc immunoreactivity as well as c-MYC amplification and/or chromosome 8 polysomy was not statistically associated with prognosis. Our study demonstrates that a subset of ACCs shows c-MYC alterations including gene amplification and chromosome 8 polysomy. Although they are not associated with a different prognostic signature, the fact that these alterations are present in all MANECs suggests a role in the acinar-neuroendocrine differentiation possibly involved in the pathogenesis of MANECs

    The thick-bedded tail of turbidite thickness distribution as a proxy for flow confinement: examples from Tertiary basins of central and northern Apennines (Italy)

    Get PDF
    This study reviews the thickness statistics of non-channelized turbidites from four tertiary basins of Central-Northern Apennines (Italy), where bed geometry and sedimentary character have been previously assessed. Though very different in terms of size and, arguably, character of feeder system, these basins share a common stratigraphic evolution consisting in transition from an early ponded to a late unconfined setting of deposition. Based on comparison of thickness subsets from diverse locations and stratigraphic heights within the studied turbidite fills, this paper seeks to answer the following questions: i) how data collection procedures and field operational constraints (e.g. measure location, outcrop quality, use of thicknesses data from single vs. multiple correlative sections, stratigraphic thickness of the study interval) can affect statistics of sample data? ii) how depositional controls of confined vs. unconfined turbidite basins can result in different thickness-frequency distributions?; and iii) is there in thickness statistics a ‘flow confinement’ signature which can be used to distinguish between confined and unconfined turbidites? Results suggest that: i) best practices of data collection are crucial to a meaningful interpretation of sample data statistics, especially in presence of stratigraphic and spatial trends of turbidite bed thickness; ii) a systematic bias against cm-thick Tcd Bouma sequence turbidites exists in sample data, which can result in the low-end tail of empirical thickness-frequency distributions to depart significantly from the actual distribution of turbidite thickness; and iii) thickness statistics of beds starting with a basal Ta/Tb Bouma division bear a coherent relationship to the transition from ponded to unconfined depositional settings, consisting in reduction of variance and mean and, consequently, parameters, or even type, of best fit model distribution. This research highlights the role of flow stripping, sediment by-pass and bed geometry in altering the initial thickness distribution of ponded turbidites and suggests how fully ponded mini-basins represent the ideal setting for further research linking turbidite thickness statistics and frequency distribution of parent flow volumes

    Hybrid event bed character and processes linked to turbidite system sub-environments: the North Apennine Gottero Sandstone (north-west Italy)

    Get PDF
    This study documents the character and occurrence of hybrid event beds (HEBs) deposited across a range of deep-water sub-environments in the Cretaceous–Palaeocene Gottero system, north-west Italy. Detailed fieldwork (>5200 m of sedimentary logs) has shown that hybrid event beds are most abundant in the distal confined basin-plain domain (>31% of total thickness). In more proximal sectors, hybrid event beds occur within outer-fan and mid-fan lobes (up to 15% of total thickness), whereas they are not observed in the inner-fan channelized area. Six hybrid event bed types (HEB-1 to HEB-6) were differentiated mainly on basis of the texture of their muddier and chaotic central division (H3). The confined basin-plain sector is dominated by thick (maximum 9·57 m; average 2·15 m) and tabular hybrid event beds (HEB-1 to HEB-4). Their H3 division can include very large substrate slabs, evidence of extensive auto-injection and clast break-up, and abundant mudstone clasts set in a sandy matrix (dispersed clay ca 20%). These beds are thought to have been generated by highly energetic flows capable of delaminating the sea floor locally, and carrying large rip-up clasts for relatively short distances before arresting. The unconfined lobes of the mid-fan sector are dominated by thinner (average 0·38 m) hybrid event beds (HEB-5 and HEB-6). Their H3 divisions are characterized by floating mudstone clasts and clay-enriched matrices (dispersed clay >25%) with hydraulically fractionated components (mica, organic matter and clay flocs). These hybrid event beds are thought to have been deposited by less energetic flows that underwent early turbulence damping following incorporation of mud at proximal locations and by segregation during transport. Although there is a tendency to look to external factors to account for hybrid event bed development, systems like the Gottero imply that intrabasinal factors can also be important; specifically, the type of substrate available (muddy or sandy) and where and how erosion is achieved across the system producing specific hybrid event bed expressions and facies tracts

    SHORT NOTES ON THE SHIMSHAL VALLEY GEOLOGY (WESTERN KARAKORUM-PAKISTAN)

    No full text
    A geological reconnaissance carried out during Summer 1982 along the lower and middle Shimshal Valley allows to identify some lithostratigraphic units madc up of slates (shaly and sandy deep— sea turbidites), shelf limestones and dolomites. The Upper Paleozoic age of some fossiliferous limestones is well documented. Ultrabasic dykes discordant to both bedding and cleavage intruded slates and dolomites
    • 

    corecore