2,112 research outputs found

    Phenotyping the ideotypes of two maize landraces from Madeira archipelago using morpho-agronomic traits and zein pattern

    Get PDF
    Madeira Archipelago holds specific maize genetic resources whose populations, representing field diversity, were previously classified into four main landrace groups. The ISOPs 0061 and 0070, with common names of “Milho Sequeiro” and “Milho Branco” yellow and white maize, respectively, represent the ideotypes of two of these landraces. These ideotypes have now been analyzed using morpho-agronomic and biochemical traits, to phenotype these landraces. The variation of nine of the ten morpho-agronomic traits was used to separate the landraces ideotypes. However, the seven traits of seed biochemical composition did not allow to segregate the landraces ideotypes. This is not the case of zein pattern, which polymorphism shows to be specific for each ideotype. The original ideotypes populations were regenerated twice under low input conditions. Zein patterns of the original and regenerated accessions were compared, using two electrophoresis techniques. The lab-on-a-chip electrophoresis showed that the standard SDS-PAGE zein pattern with six fractions could be separated into eighteen (ISOP 0061) and twenty (ISOP 0070) protein bands. In contrast, no significant changes were detected in the zein pattern structure of the initial and regenerated accessions of both landraces ideotypes. The chip electrophoresis showed to be a suitable technique to screen and characterize a large number of individuals and accessions of the germplasm collections, due to its reproducibility. In particular, the zein patterns can be used to phenotype ideotypes and establish a formula representing their structure, allowing to detect changes in landrace structure, occurring as a result of gene bank management actions.info:eu-repo/semantics/publishedVersio

    Methane Emissions by Lactating Ewes Grazing Italian Ryegrass

    Get PDF
    Agriculture contributes 13.5% of global emissions of greenhouse gases (GHG) (IPCC 2007), and about 50% of CH4 and 60% N2O from anthropogenic sources, while livestock contributes an additional 18% of global GHG emissions (FAO, 2006). Among the various sources with a potential negative impact on the environment, methane emissions for which livestock are mainly responsible have been highlighted for the agricultural sector. Studies on means to mitigate these emissions, and understand how integrated crop and livestock production systems may contribute to the reduction of greenhouse gases, are essential for the creation of public policies for environmental preservation. The objective in this study was to evaluate how strategies for grazing management can influence animal production and emission of methane in areas of crop-livestock integration

    Identification of aluminum resistant genotypes among Madeiran regional wheats

    Get PDF
    Forty-eight genotypes representing wheat diversity from the Island of Madeira were screened for resistance to aluminum (Al) in nutrient solution. Seeds of wheat used in the experiments were obtained from local farmers. The soil pH and content of ionic Al of plots cultivated with wheat were analyzed. The pH of topsoils varied between 3.83 and 6.59. The amount of ionic Al in soil samples varied between 0.38 and 1.36 cmol Al3 + per kg of soil and was positively correlated with the altitude of a plot. Eriochrome cyanine staining was used to evaluate the effect of Al ions on the root elongation. Seventy-two hour exposure of 3-day-old seedlings to 100 and 200 mM Al in nutrient solution revealed a high number of Al resistant genotypes among wheat germplasm. After withdrawal of Al stress, survival and root regrowth was observed in 28 and 23 genotypes screened at 100 and 200 mM Al in nutrient solution, respectively. Enhanced resistance to Al among Madeiran genotypes was associated with the amount of ionic Al in the soils. Complexity and various patterns of responses of tested cultivars to Al stress may suggest that Madeiran germplasm could be a valuable source of genes controlling Al resistance for conventional breeding programs and for studies of molecular bases of mechanisms of Al resistance.Portuguese Foundation for the Science and Technology (FCT, Fundac¸o para a Cieˆncia e Tecnologia) has sponsored this work, through the Centre of Biological and Geological Sciences (C.C.B.G.) and the project POCTI/no. 33005/AGR/1999. The authors are also grateful to the Madeiran Centre of Science and Technology (CITMA) for financial support. Acknowledgements are due to Mr. Roge´rio Correia and Juan Silva for the technical assistance in conducting the laboratory and fieldwork and to Dr. Andrzej Aniol for valuable advice during preparation of this manuscript.info:eu-repo/semantics/publishedVersio

    Genetic susceptibility to aspergillosis in allogeneic stem-cell transplantation

    Get PDF
    Invasive aspergillosis (IA) is a major threat to positive outcomes for allogeneic stem-cell transplantation (allo-SCT) patients. Despite presenting similar degrees of immunosuppression, not all individuals at-risk ultimately develop infection. Therefore, the traditional view of neutropenia as a key risk factor for aspergillosis needs to be accommodated within new conceptual advances on host immunity and its relationship to infection. Polymorphisms in innate immune genes, such as those encoding TLRs, cytokines and cytokine receptors, have recently been associated with susceptibility to IA in allo-SCT recipients. This suggests that understanding host-pathogen interactions at the level of host genetic susceptibility will allow the formulation of new targeted and patient-tailored antifungal therapeutics, including improved donor screening.Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/65962/2009, SFRH/BPD/46292/2008Specific Targeted Research Projects MANASP (LSHE-CT-2006), contract number 037899 (FP6), Italian Project PRIN2007KLCKP8_004

    A selective p53 activator and anticancer agent to improve colorectal cancer therapy

    Get PDF
    Impairment of the p53 pathway is a critical event in cancer. Therefore, reestablishing p53 activity has become one of the most appealing anticancer therapeutic strategies. Here, we disclose the p53-activating anticancer drug (3S)-6,7-bis(hydroxymethyl)-5-methyl-3-phenyl-1H,3H-pyrrolo[1,2-c]thiazole (MANIO). MANIO demonstrates a notable selectivity to the p53 pathway, activating wild-type (WT)p53 and restoring WT-like function to mutant (mut)p53 in human cancer cells. MANIO directly binds to the WT/mutp53 DNA-binding domain, enhancing the protein thermal stability, DNA-binding ability, and transcriptional activity. The high efficacy of MANIO as an anticancer agent toward cancers harboring WT/mutp53 is further demonstrated in patient-derived cells and xenograft mouse models of colorectal cancer (CRC), with no signs of undesirable side effects. MANIO synergizes with conventional chemotherapeutic drugs, and in vitro and in vivo studies predict its adequate drug-likeness and pharmacokinetic properties for a clinical candidate. As a single agent or in combination, MANIO will advance anticancer-targeted therapy, particularly benefiting CRC patients harboring distinct p53 status.We thank PT national funds (FCT/MCTES, Fundação para a Ciência e a Tecnologia, and Ministério da Ciência, Tecnologia e Ensino Superior) through grants UIDB/50006/2020, UID/BIO/04469/2019, UIDB/04539/2020, and UIDP/04539/2020 (CIBB); BioTecNorte operation (NORTE-01-0145-FEDER000004) and Porto Neurosciences and Neurologic Disease Research Initiative at I3S (Norte-01-0145-FEDER-000008) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte; Masaryk University (Project MUNI/A/1127/2019) and Ministry of Education, Youth and Sports of the Czech Republic (project nos. LQ1605 and LM2018125); FCT financial support through the fellowships SFRH/BD/119144/2016 (H.R.) and SFRH/BD/117949/2016 (L.R.); Fondazione AIRC (IG#18985, A.I.); and the Programa Operacional Potencial Humano (POCH), specifically the BiotechHealth Programme (Doctoral Programme on Cellular and Molecular Biotechnology Applied to Health Sciences, PD/00016/2012). We thank Dario Rizzotto for assistance in preparing the libraries for RNA sequencing. Funding: This work was supported by PT National Funds (FCT/MCTES, Fundação para a Ciência e Tecnologia, and Ministério da Ciência, Tecnologia e Ensino Superior) via the projects UIDB/50006/2020 (LAQV/REQUIMTE), UIDB/00313/2020, and UIDP/00313/2020, co-funded by COMPETE2020-UE.info:eu-repo/semantics/publishedVersio

    Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis

    Get PDF
    Funding Information: This work was supported by European Regional Development Fund (FEDER) through the Operational Program for Competitiveness Factors (COMPETE) [HealthyAging2020 CENTRO-01-0145-FEDER-000012-N2323, POCI-01-0145-FEDER-016385, POCI-01-0145-FEDER-007440 to CNC.IBILI, POCI-01-0145-FEDER-007274 to i3S/INEB and NORTE-01-0145-FEDER-000012 to T.L.L.]; national funds through the Portuguese Foundation for Science and Technology (FCT) [PTDC/SAU-ORG/119296/2010, PTDC/ NEU-OSD/0312/2012, PESTC/ SAU/UI3282/2013-2014, MITP-TB/ECE/0013/ 2013, FCT-UID/NEU/04539/2013], PD/BD/52294/2013 to T.M.R.R., SFRH/ BD/85556/2012 (co-financed by QREN) to V.C.S]; Lisboa Portugal Regional Operational Programme (LISBOA 2020) and Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement; and by INFARMED Autoridade Nacional do Medicamento e Produtos de Saúde, I.P. [FIS-FIS-2015-01_CCV_20150630-157]. Publisher Copyright: © 2017 The Author.Aims Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide and results from an obstruction in the blood supply to a region of the heart. In an attempt to replenish oxygen and nutrients to the deprived area, affected cells release signals to promote the development of new vessels and confer protection against MI. However, the mechanisms underlying the growth of new vessels in an ischaemic scenario remain poorly understood. Here, we show that cardiomyocytes subjected to ischaemia release exosomes that elicit an angiogenic response of endothelial cells (ECs). Methods and results Exosomes secreted by H9c2 myocardial cells and primary cardiomyocytes, cultured either in control or ischaemic conditions were isolated and added to ECs. We show that ischaemic exosomes, in comparison with control exosomes, confer protection against oxidative-induced lesion, promote proliferation, and sprouting of ECs, stimulate the formation of capillary-like structures and strengthen adhesion complexes and barrier properties. Moreover, ischaemic exosomes display higher levels of metalloproteases (MMP) and promote the secretion of MMP by ECs. We demonstrate that miR-222 and miR-143, the relatively most abundant miRs in ischaemic exosomes, partially recapitulate the angiogenic effect of exosomes. Additionally, we show that ischaemic exosomes stimulate the formation of new functional vessels in vivo using in ovo and Matrigel plug assays. Finally, we demonstrate that intramyocardial delivery of ischaemic exosomes improves neovascularization following MI. Conclusions This study establishes that exosomes secreted by cardiomyocytes under ischaemic conditions promote heart angiogenesis, which may pave the way towards the development of add-on therapies to enhance myocardial blood supply.publishersversionpublishe

    Concurrent breast stroma sarcoma and breast carcinoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Breast cancer is one of the most important health problems in the world and affects a great number of women over the entire globe. This group of tumors rarely presents as bilateral disease and, when it does happen, normally occurs within the same histological type. We report a rare case of concurrent bilateral breast cancer with two different histology types, a breast carcinoma and a breast sarcoma, in a 42-year-old woman referred to our hospital.</p> <p>Case presentation</p> <p>A 42-year-old Caucasian woman admitted to our institute in August 1999, presented with a nodule in the left breast of 3.0 × 2.5 cm, and, in the right breast, one of 1.0 cm, suspected of malignancy and with a clinically negative armpit. Biopsies had revealed invasive mammary carcinoma (right breast) and sarcoma (left breast). She was submitted to bilateral modified radical mastectomy. A histological study showed an invasive mammary carcinoma degree II lobular pleomorphic type with invasion of seven of the 19 excised axillary nodes in the right breast and, in the left breast, a sarcoma of the mammary stroma, for which the immunohistochemistry study was negative for epithelial biomarkers and positive for vimentin. Later, she was submitted for chemotherapy (six cycles of 75 mg/m<sup>2 </sup>5-fluorouracil, epirubicin and cyclophosphamide) followed by radiotherapy of the thoracic wall and axillary nodes on the left. Hormone receptors were positive in the tumor of the right breast, and tamoxifen, 20 mg, was prescribed on a daily basis (five years) followed by letrozole, 2.5 mg, also daily (five years). She presented no sign of negative evolution in the last consultation.</p> <p>Conclusion</p> <p>The risk of development of bilateral breast cancer is about 1% each year within a similar histological type, but it is higher in tumors with lobular histology. In this case, the patient presented, simultaneously, two histologically distinct tumors, thus evidencing a rare situation.</p

    Ten simple rules for making training materials FAIR

    Get PDF
    Author summary: Everything we do today is becoming more and more reliant on the use of computers. The field of biology is no exception; but most biologists receive little or no formal preparation for the increasingly computational aspects of their discipline. In consequence, informal training courses are often needed to plug the gaps; and the demand for such training is growing worldwide. To meet this demand, some training programs are being expanded, and new ones are being developed. Key to both scenarios is the creation of new course materials. Rather than starting from scratch, however, it’s sometimes possible to repurpose materials that already exist. Yet finding suitable materials online can be difficult: They’re often widely scattered across the internet or hidden in their home institutions, with no systematic way to find them. This is a common problem for all digital objects. The scientific community has attempted to address this issue by developing a set of rules (which have been called the Findable, Accessible, Interoperable and Reusable [FAIR] principles) to make such objects more findable and reusable. Here, we show how to apply these rules to help make training materials easier to find, (re)use, and adapt, for the benefit of all

    A breakthrough on Amanita phalloides poisoning: an effective antidotal effect by polymyxin B

    Get PDF
    Amanita phalloides is responsible for more than 90 % of mushroom-related fatalities, and no effective antidote is available. a-Amanitin, the main toxin of A. phalloides, inhibits RNA polymerase II (RNAP II), causing hepatic and kidney failure. In silico studies included docking and molecular dynamics simulation coupled to molecular mechanics with generalized Born and surface area method energy decomposition on RNAP II. They were performed with a clinical drug that shares chemical similarities to a-amanitin, polymyxin B. The results show that polymyxin B potentially binds to RNAP II in the same interface of a-amanitin, preventing the toxin from binding to RNAP II. In vivo, the inhibition of the mRNA transcripts elicited by a-amanitin was efficiently reverted by polymyxin B in the kidneys. Moreover, polymyxin B significantly decreased the hepatic and renal a-amanitin-induced injury as seen by the histology and hepatic aminotransferases plasma data. In the survival assay, all animals exposed to a-amanitin died within 5 days, whereas 50 % survived up to 30 days when polymyxin B was administered 4, 8, and 12 h post-a-amanitin. Moreover, a single dose of polymyxin B administered concomitantly with a-amanitin was able to guarantee 100 % survival. Polymyxin B protects RNAP II from inactivation leading to an effective prevention of organ damage and increasing survival in a-amanitin-treated animals. The present use of clinically relevant concentrations of an already human-use-approved drug prompts the use of polymyxin B as an antidote for A. phalloides poisoning in humans.Juliana Garcia, Vera Marisa Costa, Ricardo Dinis-Oliveira and Ricardo Silvestre thank FCT-Foundation for Science and Technology-for their PhD grant (SFRH/BD/74979/2010), Post-doc grants (SFRH/BPD/63746/2009 and SFRH/BPD/110001/2015) and Investigator grants (IF/01147/2013) and (IF/00021/2014), respectively. This work was supported by the Fundacao para a Ciencia e Tecnologia (FCT) - project PTDC/DTPFTO/4973/2014 - and the European Union (FEDER funds through COMPETE) and National Funds (FCT, Fundacao para a Ciencia e Tecnologia) through project Pest-C/EQB/LA0006/2013

    KAP Degradation by Calpain Is Associated with CK2 Phosphorylation and Provides a Novel Mechanism for Cyclosporine A-Induced Proximal Tubule Injury

    Get PDF
    The use of cyclosporine A (CsA) is limited by its severe nephrotoxicity that includes reversible vasoconstrictor effects and proximal tubule cell injury, the latter associated whith chronic kidney disease progression. The mechanisms of CsA-induced tubular injury, mainly on the S3 segment, have not been completely elucidated. Kidney androgen-regulated protein (KAP) is exclusively expressed in kidney proximal tubule cells, interacts with the CsA-binding protein cyclophilin B and its expression diminishes in kidneys of CsA-treated mice. Since we reported that KAP protects against CsA toxicity in cultured proximal tubule cells, we hypothesized that low KAP levels found in kidneys of CsA-treated mice might correlate with proximal tubule cell injury. To test this hypothesis, we used KAP Tg mice developed in our laboratory and showed that these mice are more resistant to CsA-induced tubular injury than control littermates. Furthermore, we found that calpain, which was activated by CsA in cell cultures and kidney, is involved in KAP degradation and observed that phosphorylation of serine and threonine residues found in KAP PEST sequences by protein kinase CK2 enhances KAP degradation by calpain. Moreover, we also observed that CK2 inhibition protected against CsA-induced cytotoxicity. These findings point to a novel mechanism for CsA-induced kidney toxicity that might be useful in developing therapeutic strategies aimed at preventing tubular cell damage while maintaining the immunosuppressive effects of CsA
    corecore