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9i3S - Instituto de Investigaç~ao e Inovaç~ao em Saúde, Universidade do Porto, 4150-180 Porto, Portugal
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SUMMARY
Impairment of the p53 pathway is a critical event in cancer. Therefore, reestablishing p53 activity has become
one of the most appealing anticancer therapeutic strategies. Here, we disclose the p53-activating anticancer
drug (3S)-6,7-bis(hydroxymethyl)-5-methyl-3-phenyl-1H,3H-pyrrolo[1,2-c]thiazole (MANIO). MANIO demon-
strates a notable selectivity to the p53 pathway, activating wild-type (WT)p53 and restoring WT-like function
to mutant (mut)p53 in human cancer cells. MANIO directly binds to the WT/mutp53 DNA-binding domain,
enhancing the protein thermal stability, DNA-binding ability, and transcriptional activity. The high efficacy
of MANIO as an anticancer agent toward cancers harboring WT/mutp53 is further demonstrated in pa-
tient-derived cells and xenograft mouse models of colorectal cancer (CRC), with no signs of undesirable
side effects. MANIO synergizes with conventional chemotherapeutic drugs, and in vitro and in vivo studies
predict its adequate drug-likeness and pharmacokinetic properties for a clinical candidate. As a single agent
or in combination, MANIO will advance anticancer-targeted therapy, particularly benefiting CRC patients
harboring distinct p53 status.
INTRODUCTION

Colorectal cancer (CRC) is currently the thirdmost common can-

cer type and one of the leading causes of death worldwide (Inter-

national Agency for Research on Cancer andWorld Health Orga-

nization, 2019). The increasing incidence of early-onset cases,

due to Western diet and lifestyle, has emphasized the concern

of the clinical community regarding CRC (Dekker et al., 2019;

Araghi et al., 2019). Moreover, the commonly associated high
This is an open access article und
mortality and therapeutic resistance have exposed the fragility

of its treatment (Dekker et al., 2019). Considerable advances in

pathophysiological understanding of CRC have paved the way

to an array of targeted therapies for its personalized treatment.

In particular, the disruption of the p53 pathway, mostly by

TP53mutation or p53 inhibition through interaction with negative

regulators, is a major pathological event in local and advanced

CRC (Li et al., 2015). The tumor suppressor protein p53 is the

central hub of a complex molecular network, coordinating major
Cell Reports 35, 108982, April 13, 2021 ª 2021 The Authors. 1
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Figure 1. Growth-inhibitory effect of MANIO in human cancer cells is dependent on p53 and is associated with induction of cell-cycle arrest

and apoptosis, but not genotoxicity

(A) Chemical structure of MANIO.

(legend continued on next page)
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cellular responses to potentially oncogenic stimuli (Vousden and

Prives, 2009). Its function relies mainly in the sequence-specific

transcriptional regulation of multiple target genes mostly associ-

ated with cell cycle, apoptosis, DNA repair, and senescence

(Fischer, 2017). Notably, �80% of metastatic and advanced

CRCs present TP53 mutations that greatly contribute to its

aggressiveness and invasiveness (Nakayama and Oshima,

2019). In fact, while most mutations decrease p53 DNA-binding

ability and impair its transcriptional activity, specificmutant (mut)

p53 proteins may also acquire additional oncogenic activities

(gain of function [GOF]), contributing to worse outcomes, che-

moresistance, and relapse events (Yue et al., 2017). The majority

of p53 mutations are missense and are clustered in the DNA-

binding domain (DBD), an essential region for p53 to recognize

specific DNA sequences in the promoters of its target genes

(Yue et al., 2017). Interestingly, a great proportion of mutp53 falls

within six ‘‘hotspot’’ amino acid residues, namely R248, G245,

R175, R273, R249, and R282 (Muller and Vousden, 2014; Yue

et al., 2017). These mutations were categorized as contact or

structural, depending on whether the residues have a role in

direct DNA contact or in the maintenance of wild-type (WT)p53

conformation, respectively (Muller and Vousden, 2014; Yue

et al., 2017). Specifically, substitutions at residues R175, R248,

and R273 are the most frequent mutp53 in CRC (The Cancer

Genome Atlas, 2012).

It is widely accepted that the restoration of p53 function is an

encouraging strategy in anticancer therapy. However, although

the number of p53 activators reported to date seem to be

numerous, most of them have remained in the preclinical stage

due to their lack of specificity (Li et al., 2019). In fact, p53-based

therapy is still not clinically available for cancer treatment.

Moreover, among the p53-targeting compounds under clinical

trials (Merkel et al., 2017), the Nutlins (NCT03566485,

NCT02633059, NCT03566485; Phases I/II) are not active on

mutp53 (Kocik et al., 2019), and PRIMA-1MET (APR-246;

NCT03745716; Phase III) has a p53-independent inhibitory activ-
(B) IC50 values of MANIO in a panel of human cancer cell lines with distinct p53 sta

48 h of treatment. Growth obtained with control (DMSO) was set as 100%. Data

(C) Scatterplot representation of the relationship between MANIO IC50 values an

periments; values significantly different: ***p < 0.001; 2-way ANOVA with Dunne

(D) Effect of MANIO on colony formation of p53+/+ and p53�/�HCT116 cells, after

means ± SEMs of 4 independent experiments; p < 0.01; 2-way ANOVA with Sid

(E) Measurement of DNA damage in HCT116 p53+/+ cells with 1 and 2.5 mMMAN

the alkaline comet assay. Quantification of comet-positive cells (containing >5%

cells were analyzed per sample; representative images are shown in Figure S1C

0.001; 1-way ANOVA with Dunnett’s multiple comparisons test.

(F) Cytokinesis-block micronucleus (MN) assay after 72 h of treatment, in human ly

of MN per 1,000 binucleated lymphocytes was recorded (3 independent experime

Dunnett’s multiple comparisons test.

(G) Effect of MANIO on cell-cycle progression of p53+/+ and p53�/� HCT116 cell

using propidium iodide (PI), and quantified using FlowJo software. Data are me

DMSO: ***p < 0.001; 2-way ANOVA with Dunnett’s multiple comparisons test.

(H) Effect of MANIO on apoptosis of p53+/+ and p53�/�HCT116 cells after 48 and

isothiocyanate (FITC)-annexin V and PI. Data are means ± SEMs of 3 independent

2-way ANOVA with Dunnett’s multiple comparisons test.

(I) Effect of 1 mM MANIO on PARP cleavage, after 72 h of treatment, in p53+/+

experiments. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used a

(J) Concentration-response curves of the growth inhibitory effect of MANIO in p

diphenyltetrazolium bromide (MTT) assay, after 48 h of treatment. Data are mean
ity in CRC (Lu et al., 2016). Also, the precise mechanism of anti-

tumor activity of the mutp53 reactivator COTI-2 (NCT02433626;

Phase I) is still not comprehensively understood in many can-

cers, including CRC (Salim et al., 2016). Therefore, further

research has been pursued to find novel p53-targeting agents

that could be used as effective anticancer therapeutic options

in CRC patients.

Here, the (3S)-6,7-bis(hydroxymethyl)-5-methyl-3-phenyl-

1H,3H-pyrrolo[1,2-c]thiazole (MANIO) was identified as a

WT- and mutp53-activating agent. MANIO directly binds to

p53 DBD, displaying pronounced in vitro and in vivo antitumor

activity, particularly against CRC, and exhibiting suitable

drug-likeness and pharmacokinetic (PK) properties.

RESULTS

MANIO displays p53-dependent growth-inhibitory effect
in human cancer cells, inducing cell-cycle arrest and
apoptosis in CRC cells
In an attempt to identify new effective p53-activating agents with

antitumor activity, the antiproliferative effect of a small chemical

library of 6,7-bis(hydroxymethyl)-1H,3H-pyrrolo[1,2-c]thiazoles

was investigated in a panel of human cancer cells with different

p53 status. According to the half-maximal inhibitory concentra-

tion (IC50) values obtained, MANIO (Figure 1A) showed notice-

able selectivity to p53-expressing cancer cells. In fact, results

clearly demonstrated that MANIO had a p53-dependent antipro-

liferative activity against cancer cells, with significantly lower IC50

values in cancer cells expressing WTp53 (0.20–0.97 mM) or

mutp53 (0.088–6.27 mM), compared to p53 null cells (26.20–

48.25 mM) (Figures 1B, 1C, and S1A). In particular, the IC50 value

of MANIO in WTp53-expressing HCT116 colon cells (HCT116

p53+/+; 0.97 mM) was �50-fold lower than that obtained in the

p53 null isogenic derivative (HCT116 p53�/�; 48.25 mM) (Figures

1B and S1A). Accordingly, MANIO did not significantly affect col-

ony formation in HCT116 p53�/� cells, while a pronounced
tus. Growth-inhibitory effect of MANIOwas determined by the SRB assay, after

are means ± SEMs of 4–5 independent experiments.

d p53 status in cancer cells. Data are means ± SEMs of 4–5 independent ex-

tt’s multiple comparisons test.

14 days of treatment (representative images are shown in Figure S1A). Data are

ak’s multiple comparisons test.

IO and 25 mM etoposide (ETOP; positive control), after 48 h of treatment, using

of DNA in the tail); data are means ± SEMs of 3 independent experiments (100

); 3 independent experiments; values significantly different from DMSO: ***p <

mphocyte cells; 5 mg/mL cyclophosphamide (CP): positive control; the number

nts); values significantly different from DMSO: ***p < 0.001; 1-way ANOVAwith

s, after 48 h of treatment. Cell-cycle phases were analyzed by flow cytometry

ans ± SEMs of 3 independent experiments; values significantly different from

72 h of treatment. Apoptosis was analyzed by flow cytometry using fluorescein

experiments; values significantly different from DMSO: **p < 0.01; ***p < 0.001;

and p53�/� HCT116 cells. Immunoblots are representative of 3 independent

s a loading control.

atient-derived CRC cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-

s ± SEMs (5–8 independent experiments).
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growth-inhibitory effect was observed in HCT116 p53+/+ cells

(Figures 1D and S1B).

Notably, although highly effective on CRC cells expressing

WT- or mutp53 (HCT116 p53+/+, SW837, HT-29, LS1034; IC50

values from 0.97 to 6.27 mM; Figure 1B), the growth-inhibitory ac-

tivity of MANIO against normal CCD-18Co colon cells (IC50 of

32.83 ± 1.69 mM, n = 5) was much lower, which demonstrated

its selectivity to cancer cells.

We next checkedwhether the antiproliferative effect of MANIO

was associated with the induction of DNA damage. For that, the

potential genotoxicity of MANIO was assessed in cancer and

normal cells by comet assay and micronucleus (MN) test,

respectively. Contrary to the positive controls, 1 and 2.5 mM

MANIO did not increase the percentage of comet-positive

HCT116 p53+/+ cells (Figures 1E and S1C) and the number of

formed micronuclei in peripheral lymphocytes of normal individ-

uals (Figure 1F). However, 1 and 2.5 mM MANIO induced G2/M

phase cell-cycle arrest (Figure 1G) and increased the percentage

of annexin V+ cells (Figure 1H) in p53+/+, but not in p53�/�,
HCT116 cells. The stimulation of a p53-dependent apoptotic

cell death by MANIO was further evidenced by the induction of

poly-ADP ribose polymerase (PARP) cleavage, at 1 mM, in

p53+/+, but not in p53�/�, HCT116 cells (Figure 1I).

The growth-inhibitory effect of MANIO was further checked in

a panel of patient-derived primary CRC cells, as a more disease-

relevant model system, closer to the heterogeneity and intrinsic

drug sensitivity of the original tumors (Jabs et al., 2017). All CRC

cells expressed WTp53, except for CCA8, which harbored

mutp53 P151S (Table S1). MANIO inhibited the growth of all pa-

tient-derived CRC cells with similar IC50 values ranging from 9.46

to 15.43 mM (Figure 1J; Table S1). The only exception occurred

with the CCZ2 cells (IC50 value of 0.09 mM), which were already

subjected to a previous therapy. In fact, CCZ2 cells derived

from a patient diagnosed with liver metastatic adenocarcinoma

that was first subjected to 5-fluorouracil (5-FU) and oxaliplatin

plus the anti-angiogenic agent bevacizumab (Table S1),

following by surgical removal of the remaining liver metastasis.

MANIO activates the p53 pathway in CRC cells by
binding to p53 DBD, with induction of p53 stabilization
and enhancement of its DNA-binding ability and
transcriptional activity
To gain additional evidence of the potential of MANIO to engage

the p53 response pathway, WTp53-expressing HCT116-treated

cells were analyzed by RNA sequencing (RNA-seq). MANIO treat-

ment led tobroad changes in gene expression, with nearly 900 up-

regulated and 500 downregulated differentially expressed genes

(DEGs) (data are deposited in GEO: GSE145482; Figures 2A and

2B). GeneOntology, pathway, and upstream regulator enrichment

analysis using theEnrichRweb tool (Kuleshov et al., 2016) strongly

evidenced an activation of the p53-response pathway (Figures 2C

and 2D). Instead, the list of genes repressed by MANIO diverged

from a canonical p53-dependent signature, as it was not enriched

for cell proliferation, DNA repair, DNA replication, or cell division

(Figures 2C and 2E). Similar results were obtained using gene

set enrichment analysis (GSEA) (data not shown) or Metascape

(Figures S2A and S2B). Approximately 65 established p53 target

genes were upregulated by MANIO in the RNA-seq data (Fig-
4 Cell Reports 35, 108982, April 13, 2021
ure 2D). Hence, the upregulated gene signature ofMANIO-treated

HCT116 cells is indisputably p53-related. p53-dependent gene

repression is thought to be mostly indirect and largely dependent

on the modulation of the DREAM (dimerization partner, RB-like,

E2F, and multi-vulval class B) complex via p21 (Engeland,

2018), which is induced by MANIO. Hence, we compared MANIO

downregulated DEGs with an extended list of DREAM complex

targets and found a very small overlap (Figure S2C). However, a

trend for downregulation by MANIO of several DREAM targets

was observed (Figure S2D). We then explored whether the lack

of a canonical p53-dependent gene repression signature could

be dependent on the time point of the RNA-seq by following 4

DREAM targets in MANIO-treated cells for 16, 24, and 48 h (Fig-

ure S2E). Results confirmed the RNA-seq data and also showed

the same trend for the earlier time point, while the 48-h treatment

showed a trend for downregulation, paralleled by the higher in-

duction of p21. The results therefore indicated that MANIO

engaged the p53-dependent response, with its effects persisting

and increasing over at least a 48-h time window.

Consistently, in HCT116 p53+/+ cells, MANIO treatment

increased p53 protein levels in a dose- and time-dependent

manner (Figures 3A and 3B), which was related to p53 stabiliza-

tion (Figures 3C and 3D). In fact, an enhancement of p53 half-life

by MANIO was observed upon the inhibition of protein synthesis

with cycloheximide (CHX). Moreover, MANIO regulated the pro-

tein levels of major p53 transcriptional targets, increasing

MDM2, p21, GADD45, PUMA, and Killer/DR5, while decreasing

the anti-apoptotic BCL-2 in p53+/+, but not in p53�/�, HCT116
cells (Figures 3E and 3F). Accordingly, MANIO upregulated the

mRNA levels of the p53 transcriptional targets MDM2,

CDKN1A/p21, GADD45A, BAX, TNFRSF10B/DR5, PUMA, and

NOXA in HCT116 p53+/+ cells (Figure 3G) without affecting their

expression in HCT116 p53�/� cells (Figure 3H).

Similarly, in WTp53-expressing patient-derived CCZ1, CCZ2,

CCZ3, and CCZ5 cells, MANIO engaged a p53 response by

interfering withmRNA expression levels of several p53 transcrip-

tional targets, increasing BAX, CDKN1A/p21, and MDM2 (Fig-

ures 3I–3L), while decreasing the levels of the angiogenic factor

VEGF in CCZ1, CCZ3, and CCZ5 (Figures 3I, 3J, and 3L). Impor-

tantly, in CCZ1, CCZ2, and CCZ3 cells, MANIO also significantly

decreased the mRNA expression levels of the pro-survival

BIRC5 (Figures 3I–3K), which is a critical gene in cancer cell

growth and chemoresistance.

Via the chromatin immunoprecipitation (ChIP) assay, we could

verify that the increase of p53 transcriptional activity by MANIO

resulted from an enhancement of p53 DNA-binding ability in

HCT116 p53+/+ cells. In fact, MANIO increased the p53 occu-

pancy at the MDM2 and CDKN1A promoters (Figure 3M).

For an in-depth understanding of the mode of action of

MANIO, we started by checking the potential binding of MANIO

to WTp53 by cellular thermal shift assay (CETSA) analysis. The

results showed that 30 mM MANIO induced WTp53 thermal sta-

bility at 38�C and 39�C (Figure 3N), causing a concentration-

dependent WTp53 thermal stability at 39�C, when compared

to solvent (Figures 3O and 3P), in HCT116 p53+/+ cells. In

CETSA, upon gradual heating, unbound proteins denature and

precipitate, while a small-molecule ligand can counteract this ef-

fect by providing thermodynamic stability to a target protein,



Figure 2. Gene expression profile changes in human cancer cells by MANIO reveal a p53-activating signature

(A) Principal-component analysis (PCA) (Fernandes et al., 2017) of the gene expression counts (log2 normalized trimmedmean ofM values [TMM]method counts)

showing the first versus the second PC. In the axes, the percentage of the explained variance by the component is reported. Samples in the 2 conditions (DMSO,

1 mM MANIO) are highlighted in different colors and different shapes.

(B) Heatmap showing the differentially expressed genes (log2 fold change <�1 or >1, multiple tests correction, adjusted p < 0.05) in the comparison of MANIO

versus DMSO. Gene expression counts were normalized by the TMM method, hierarchically clustered with average linkage, and uncentered correlation metric

was applied. Two main clusters of genes were obtained: the first comprises the genes upregulated through the samples cluster and a second one comprises the

genes downregulated.

(C) Bar plot graphs represent the enrichment of the biological terms based on the combined score (x axis), as calculated by the EnrichR web tool; upper panel:

upregulated (UP) gene cluster, bottom panel: downregulated (DW) gene cluster. Since this tool provides a large collection of gene set databases, a few key

elements were selected for each (full results in Figure S2). All of the terms have multiple test correction adjusted p < 0.05.

(D and E) Boxplot representations of the RNA-seq-based gene expression for 1 element from the upregulated gene cluster (p53 signaling pathway (D) and 1

element from the downregulated gene cluster (cyclic AMP [cAMP]-mediated cell motility pathway genes (E).

Article
ll

OPEN ACCESS
subsequently increasing its fraction in solution (Martinez Molina

and Nordlund, 2016). Based on this premise, the increase in the

amount of soluble WTp53, after the heating of cell lysates, indi-

cated potential protein-ligand interactions. To confirm these re-

sults evidenced by CETSA, the human WTp53 DBD was pro-

duced in Escherichia coli for a binding fluorescence quenching

assay. The binding assay confirmed that MANIO directly bound

to WTp53 DBD (Kd of 590 ± 90 mM; Figure 3Q).

MANIO synergizes with conventional chemotherapeutics
in patient-derived CRC cells expressing WTp53
The ability ofMANIO to enhance the anticancer activity of conven-

tional chemotherapeutic drugs, including doxorubicin (DOXO) and

cisplatin (CISP), was investigated in patient-derived CCZ3 cells
expressing WTp53. Platinum-based agents (CISP) are typically

included in the first-line regimens for CRC treatment (Yau,

2019). DOXO has limited efficacy against CRC due to frequent

multidrug resistance (Khaleel et al., 2016). CCZ3 cells were

treated with a range of concentrations of DOXO or CISP alone

and in combination with 2 mMMANIO followed by the determina-

tion of cell proliferation, after 48 h of treatment. In combination re-

gimes with DOXO and CISP, MANIO significantly increased the

growth-inhibitory effect of these chemotherapeutic agents (Fig-

uresS3A andS3B). Consistently, synergic effects (combination in-

dex [CI] < 1) were obtained for the different combinations between

MANIO and DOXO or CISP, in CCZ3 cells (Table 1). Moreover,

the dose reduction index (DRI) values indicated that MANIO can

reduce the effective dose of the chemotherapeutic agents
Cell Reports 35, 108982, April 13, 2021 5
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(Table 1), therefore minimizing their undesirable toxicity and

commonly associated chemoresistance (Li et al., 2017).

MANIO restoresWT-like properties tomutp53R248Wby
directly binding to protein DBD
Given the prominent antiproliferative activity of MANIO in human

cancer cells expressing distinct mutp53 forms, particularly of

CRC (Figure 1B), its capacity to reactivate different structural

and contact mutp53s, with high prevalence and clinical rele-

vance in human cancers (Muller and Vousden, 2014), was further

investigated. For that, these mutp53s were ectopically ex-

pressed in p53 null H1299 cancer cells, and the antiproliferative

effect of MANIO was evaluated (Figure 4A). Importantly, no sig-

nificant differences were detected between the protein expres-

sion levels of the different mutp53s (Figure 4A, lower panel).

When compared to cells transfected with the empty vector,

MANIO showed a significant reduction of its IC50 value in

H1299 cells expressing mutp53 R282W, R248W, R280K,

R273H, R273C, G245D, R175H, R248Q, or G245S (Figure 4A).

Despite the large panel of mutp53 potentially reactivated by

MANIO, its highest inhibitory effect was achieved on cells ex-

pressing mutp53 R248W or R248Q, while no reduction in IC50

was observed for mutp53 Y220C, which suggested some level

of selectivity for mutp53 forms. Importantly, the high IC50 values

of MANIO in both parental (39.50 ± 2.50 mM; Figure 1B) and

empty vector-transfected (41.25 ± 1.61 mM; Figure 4A) H1299

cancer cells further reinforced its mutp53-dependent antiproli-

ferative activity.

To gain a deeper understanding of the ability of MANIO to re-

activate mutp53, we focused on mutp53 R248W. The prominent

growth-inhibitory effect displayed by MANIO in SW837 rectum

cells, which endogenously express mutp53 R248W, by sulfo-
Figure 3. MANIO directly binds to WTp53 DBD, enhancing its stabiliza

(A and B) Effect of MANIO on the protein expression levels of p53, after 24, 48, an

levels relative to DMSO (set as 1); data are means ± SEMs of 3 independent exp

(C and D) p53 protein levels in HCT116 p53+/+ cells treated with 1 mMMANIO or so

of p53 protein levels relative to 0 h (no CHX treatment) was set as 1; data are me

(E and F) Effect of 1 mMMANIO on the protein expression levels of p53 transcriptio

PUMA) of treatment, in p53+/+ and p53�/� HCT116 cells. Blots of PUMA, KILLER

(HCT p53�/�), and PUMA, KILLER and BCL-2 (HCT p53�/�), share the same load

p53�/� HCT116 cells, relative to DMSO (set as 1); data are means ± SEMs of 3 i

(G and H) Effect of MANIO in mRNA expression levels of p53 target genes in p5

qRT-PCR. Fold of induction relative to DMSO. GAPDH and B2M were used as re

significantly different from DMSO: *p < 0.05; **p < 0.01; ***p < 0.001; 2-way ANO

(I–L) Effect of MANIO in mRNA expression levels of p53 target genes in CCZ1 (I),

qRT-PCR. Fold of induction is relative to DMSO. HSP90AB1 was used as refe

significantly different from DMSO: *p < 0.05; **p < 0.01; ***p < 0.001; unpaired S

(M) Analysis of p53 occupancy atMDM2 andCDKN1A promoters, in HCT116 p53

Immunoprecipitation was performed using the anti-p53 antibody or an anti-mous

fragments was analyzed by qPCR using site-specific primers. Data are means ± S

*p < 0.05; 2-way ANOVA with Dunnett’s multiple comparison test.

(N–P) CETSA experiments were performed in HCT116 p53+/+ lysates.

(N) Lysate samples, treated with DMSO (�) or MANIO (+; 30 mM), were heated a

(O) Lysate samples were treated with increasing concentrations of MANIO and h

(P) Plotted data represent the amount of non-denatured p53 after heating in MAN

was calculated setting the amount of non-denatured mutp53 obtained with DMS

significantly different from DMSO: *p < 0.05; ***p < 0.001; 2-way ANOVA with Du

(Q) Binding of MANIO to WTp53 measured by fluorescence quenching of 5 mMWT

was determined via nonlinear regression using the equation described in Method

In (A), (C), (E), (N), and (O), immunoblots are representative of 3 independent exp
rhodamine (SRB) assay (IC50 of 2.9 ± 0.32 mM; Figure 1B), was

also confirmed by colony-formation assay (Figures 4B and

S4A). Furthermore, MANIO induced apoptotic cell death in

SW837 cells (Figure 4C). Consistently with a reactivation of

mutp53 R248W, MANIO increased the protein levels of p53 tran-

scriptional targets, including MDM2 and PUMA, an effect abol-

ished by p53 small interfering RNA (siRNA) (Figures 4D and 4E,

and S4B). Moreover, the mRNA levels of MDM2, CDKN1A/

p21, and NOXA were upregulated in a dose-dependent manner

(Figure 4F). In addition, MANIO enhanced mutp53 R248W occu-

pancy at MDM2 and CDKN1A promoters, demonstrating the

restoration of mutp53 DNA-binding ability (Figure 4G).

AswithWTp53, the impact ofMANIO on the thermal stability of

mutp53 R248W was also checked in whole and lysate SW837

cells. In cell lysates, the CETSA analysis demonstrated that

MANIO induced mutp53 R248W thermal stability between

39�C and 41�C (Figure 4H). Moreover, at 40�C, MANIO caused

concentration-dependent mutp53 R248W thermal stability

when compared to solvent (Figures 4I and 4J). In fact, 0.75 mM

MANIO promoted a complete protein stabilization, with reestab-

lishment of the non-denatured mutp53 protein levels observed

with solvent at 25�C. Consistently, in whole SW837 cells, a sig-

nificant thermal stabilization of mutp53 R248W could also be

observed at 40�C for 3 mM MANIO (Figures 4K and 4L). Impor-

tantly, the ability of MANIO to induce the thermal stability of other

mutp53, including Y126C and R273H, was also verified (Figures

S4C–S4F). These results indicated a potential interaction be-

tween MANIO and mutp53. To corroborate these findings,

the recombinant human mutp53 R248W DBD was produced in

Escherichia coli and was used in a binding fluorescence quench-

ing assay, which confirmed the direct interaction of MANIO with

mutp53 R248W DBD (Kd of 320 ± 90 mM; Figure 4M).
tion, DNA-binding ability, and transcriptional activity in CRC cells

d 72 h of treatment, in HCT116 p53+/+ cells (A). (B) Quantification of p53 protein

eriments.

lvent for 48 h followed with 150 mg/mL cycloheximide (CHX). (D) Quantification

ans ± SEMs of 3 independent experiments.

nal targets, after 48 h (MDM2, p21, andGADD45) and 72 h (BCL-2, KILLER, and

and BCL-2 (HCT p53+/+), p21 and GADD45 (HCT p53+/+), MDM2 and GADD45

ing control GAPDH. (F) Quantification of protein expression levels in p53+/+ and

ndependent experiments.

3+/+ (G) and p53�/� (H) HCT116 cells, after 48 h of treatment, determined by

ference genes. Data are means ± SEMs of 3 independent experiments; values

VA with Dunnett’s multiple comparison test.

CCZ2 (J), CCZ3 (K), and CCZ5 (L) cells, after 48 h of treatment, determined by

rence gene. Data are means ± SEMs of 3 independent experiments; values

tudent’s t test.
+/+ cells, determined by ChIP, after 48 h of treatment with 1 and 2.5 mMMANIO.

e immunoglobulin G (IgG) as a negative control (IgG). The enrichment of DNA

EMs of 3 independent experiments; values significantly different from DMSO:

t different temperatures.

eated at 39�C.
IO-treated lysates relative to DMSO (3 independent experiments); fold increase

O at 25�C as 1. Data are means ± SEMs (3 independent experiments); values

nnett’s multiple comparisons test.

p53 DBD recombinant protein upon MANIO titration. The Kd for the interaction

details.

eriments; GAPDH was used as loading control.
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Table 1. Effect of MANIO in combination with conventional

chemotherapeutic agents, in WT- and mutp53-expressing CRC

cells

Drug combination

with MANIO

Mutually

nonexclusive CI

DRI of

conventional drug

Patient-derived CCZ3 cells

Cisplatin (mM)

4.9 0.75 1.33

7.4 0.81 1.23

DOXO (mM)

0.39 0.52 2.63

0.59 0.54 2.70

0.89 0.59 2.87

1.33 0.61 1.63

SW837 cells

DOXO (nM)

31.25 0.38 8.19

62.5 0.34 6.35

125 0.39 4.14

250 0.51 2.60

500 0.32 3.58

5- FU (mM)

1.25 0.31 36.52

2.5 0.26 33.97

5 0.25 22.51

10 0.25 15.15

20 0.25 11.31

Cisplatin (mM)

2.5 0.63 9.31

5 0.68 5.36

10 0.70 3.85

20 0.37 8.84

The synergistic effect of 2 mM (CCZ3 cells) or 0.9 mM (SW837 cells)

MANIO in combination with doxorubicin (DOXO), 5-fluorouracil (5-FU),

or cisplatin was evaluated using CompuSyn software to calculate

combination index (CI) and conventional chemotherapeutic dose reduc-

tion index (DRI) values. CI < 1, synergy. Data were calculated using a

mean value effect (6 independent experiments). CRC, colorectal cancer;

MANIO, (3S)-6,7-bis(hydroxymethyl)-5-methyl-3-phenyl-1H,3H-pyrrolo

[1,2-c]thiazole.
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MANIO synergizes with conventional
chemotherapeutics in CRC cells expressing mutp53
We also analyzed the ability of MANIO to improve the anticancer

activity of the conventional chemotherapeutics DOXO, 5-FU,

andCISP inmutp53-expressing CRC cells. For that, SW837 cells

were treated with a range of concentrations of DOXO, 5-FU, or

CISP, alone and in combination with 0.9-mM MANIO, followed

by evaluation of cell proliferation, after 24 h treatment. The re-

sults showed that MANIO significantly increased DOXO, CISP,

and 5-FU growth-inhibitory effects (Figures S3C–S5E). Consis-

tently, synergic effects (CI < 1) were obtained for the different

combinations between MANIO and DOXO, CISP, and 5-FU, in
8 Cell Reports 35, 108982, April 13, 2021
SW837 cells (Table 1). According to DRI values, MANIO can

reduce the effective dose of chemotherapeutic agents, and sub-

sequently their undesirable toxicity and chemoresistance.
MANIO has in vivo p53-dependent antitumor activity in
xenograft mouse models of CRC, with no apparent toxic
side effects
The in vivo antitumor activity of MANIO was assessed using

xenograft mouse models of HCT116 p53+/+, HCT116 p53�/�,
and SW837 CRC cells. Four intraperitoneal administrations of

MANIO inhibited the growth of WTp53-expressing HCT116

(100 mg/kg; Figures 5A and 5B) and mutp53-expressing

SW837 (50 and 100 mg/kg; Figures 5D and 5E) tumors when

compared to vehicle. Conversely, for the same conditions,

MANIO did not interfere with the growth of p53 null HCT116 tu-

mors (Figures 5G and 5H), supporting its in vivo p53-dependent

antitumor activity.

During the experimental time, no significant loss of body

weight or morbidity signs were observed in mice treated with

MANIO (Figures 5C, 5F, and 5I). We also examined potential pri-

mary toxicity signs in mice induced by MANIO treatments. At the

time of sacrifice, organs’ relative weight and biochemical and he-

matological blood parameters were determined (Table S2). No

significant differences regarding the weight of heart, spleen,

liver, or kidneys, as well as hematological and biochemical pa-

rameters, were observed between MANIO and vehicle groups.

Tumor sections were subsequently analyzed by immunohisto-

chemistry staining (Figures 5J–5N). In both HCT116 p53+/+ and

SW837 tumors, MANIO reduced proliferation, as demonstrated

by decreased Ki67+ staining (Figures 5J and 5K), and induced

apoptosis, as demonstrated by increased Bax expression (Fig-

ures 5J and 5L) and DNA fragmentation (TUNEL+ staining; Fig-

ures 5J and 5M) when compared to vehicle. Accordingly, no sig-

nificant differences were observed in these markers between

MANIO- and vehicle-treated HCT116 p53�/� tumors (Figures

5J–5M). Alterations in p53 expression levels were also detected

in the different experimental groups. As expected, p53 expres-

sion was not observed in MANIO- or vehicle-treated HCT116

p53�/� tumors (Figure 5J). Also, much higher p53 levels were

found in mutp53-expressing SW837 tumors than in WTp53-ex-

pressing HCT116 tumors (vehicle-treated tumors; Figures 5J

and 5N). Moreover, in HCT116 p53+/+ tumors, consistent with

a p53 stabilization, MANIO increased WTp53 expression levels

compared to the vehicle (Figures 5J and 5N). Conversely, in

SW837 tumors, MANIO significantly decreased mutp53 expres-

sion levels (Figures 5J and 5N).
MANIO exhibits suitable drug-likeness and
pharmacokinetic properties for a clinical candidate
According to solubility determinations, MANIO presented good

solubility in aqueous solvents of neutral and basic pH, but not

in low pH aqueous solvents (Table S3). MANIO also displayed

the coefficient partition (logD) of 1.09, indicating an adequate lip-

ophilicity and therefore its suitability to cross cellular mem-

branes. In fact, MANIO complies all of the ‘‘rule of 5’’ parameters

for good oral absorption, including <5 hydrogen bond donors

(expressed as the sum of OHs and NHs), a molecular weight
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inferior to 500, a logP <5, and <10 hydrogen bond acceptors (ex-

pressed as the sum of Ns and Os) (Lipinski et al., 2001).

The study of the transport of MANIO across a Caco-2 cell

monolayer to predict human intestinal permeability revealed

that despite the good permeability, with a high percentage of

MANIO recovery, some level of MANIO efflux was occurring (Ta-

ble S4), which may limit drug absorption in the intestine.

Regarding the susceptibility of MANIO to undergo hepatic

first-pass metabolism, in vitromodels of hepatic clearance using

human liver microsomes showed that MANIO exhibited relatively

low intrinsic clearance (CLint < 115.5 mg/min/pmol; Table S5),

which may predict a slower clearance in vivo, and therefore a

longer activity. Also, contrary to most drugs that largely bind to

plasma proteins, such as albumin (Undevia et al., 2005), a negli-

gible fraction of MANIO bound to plasmatic albumin was de-

tected (Table S6), indicating that a high percentage of MANIO

is pharmacologically active and free to distribute.

The kinetics of MANIO were also analyzed in mice treated via

intravenous bolus injection, which constitutes the most direct

route of administration, resulting in fast and full compound

bioavailability. Given the very low fraction of protein-bound

MANIO (Table S6), with free compound at�99.6%, mice plasma

level determinations were expected to represent almost all

MANIO free fraction available at a given time point. The curve

of total plasma concentration of MANIO versus time (Figure S5;

Table S7) indicated an apparent volume of distribution at steady

state (Vss) of 4 L/kg, which can be attributed to the fast body dis-

tribution ofMANIO. In fact, drugs that slightly bind to plasma pro-

teins or with good lipophilicity, such as MANIO, present high Vss

(Toutain and Bousquet-Mélou, 2004). MANIO showed high
Figure 4. MANIO restores WT-like properties to mutp53: direct inter

stability and enhancement of its DNA-binding ability and transcription

(A) p53 null H1299 cells were transfected with pcDNA3 plasmid (empty or express

by SRB assay after 48 h of treatment of H1299 cells. Data are means ± SEMs of 4

*p < 0.05; **p < 0.01; ***p < 0.001; unpaired Student’s t test. Immunoblots represe

after 72 h of incubation.

(B) Effect of MANIO on SW837 cell colony formation after 11 days of treatmen

of 4 independent experiments; values significantly different from empty vector: *

parisons test.

(C) Effect of 3 mMMANIO on apoptosis of SW837 cells, after 48 h of treatment. Ap

means ± SEMs of 3 independent experiments; values significantly different from

(D and E) Protein levels of MDM2 and PUMA, after 24 h of treatment with 3 mM

(silencing efficacy of mutp53 by siRNA is shown in Figure S4B).

(E) Quantification of protein expression levels is relative to DMSO (set as 1).

(F) Effect of MANIO on the mRNA expression levels of p53 target genes in SW8

relative to DMSO. GAPDH and B2M were used as reference genes. Data are me

DMSO: *p < 0.05; **p < 0.01; ***p < 0.001; 2-way ANOVA with Dunnett’s multiple

(G) Analysis of the p53 occupancy at MDM2 and CDKN1A promoters in SW837

cipitation was performed with the anti-p53 antibody or an anti-mouse IgG as a ne

using site-specific primers. Data are means ± SEMs (3 independent experimen

ANOVA with Dunnett’s multiple comparisons test.

(H–L) CETSA experiments were performed in lysate (H–J) and whole (K and L) SW

(H) Lysate samples, treated with DMSO (�) or MANIO (+; 0.75 mM), were heated

(I)–(L) Samples were treated with increasing concentrations ofMANIO and heated

heating, in MANIO-treated relative to DMSO (3 independent experiments); fold in

with DMSO at 25�C at 1. Data are means ±SEMs (3 independent experiments); va

ANOVA with Dunnett’s multiple comparisons test.

(M) Direct binding of MANIO tomutp53 R248WDBDmeasured by fluorescence qu

values for the interactions were determined via nonlinear regression using the eq

In (A), (D), (H), (I ), and (K), immunoblots are representative of 3 independent exp
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clearance (CL = 26 mL/min/kg; Table S7) and an elimination

half-life (t1/2) of �6.83 h (Table S7). Collectively, these results

predict adequate drug-likeness and PK properties for MANIO.

DISCUSSION

An in-depth knowledge of CRC pathogenesis has greatly

improved patient stratification, based on molecular subtypes of

CRC, and therefore the personalized therapy of this type of can-

cer. In particular, the inactivation of the p53 pathway is an indis-

putable event in CRC development, which has rendered its func-

tional restoration an appealing strategy in targeted anticancer

therapy.

Here, we report the identification of the p53-activating agent

MANIO, which is able to activate WTp53 and restore WT-like

function to mutp53. In fact, MANIO displayed an evident p53-

dependent antitumor activity, with a much higher growth-inhibi-

tory effect on WT-/mutp53-expressing cancer cells than on p53

null cells. In particular, in WTp53-expressing CRC cells, MANIO

induced cell-cycle arrest and apoptosis. Consistently, it inter-

fered with the protein and mRNA expression levels of major

p53 transcriptional targets, increasing the cell-cycle regulators

p21 and GADD45 and the pro-apoptotic PUMA and KILLER/

DR5, while decreasing the anti-apoptotic regulator BCL-2.

These effects were associated with a marked induction of

WTp53 stabilization by MANIO. Notably, we also uncovered

that MANIO directly bound to the WTp53 DBD, leading to its

thermal stability.

A pronounced growth-inhibitory effect of MANIO was also un-

veiled in cancer cells expressing distinct contact and structural
action with mutp53 R248W DBD with induction of protein thermal

al activity

ing mutp53). Growth-inhibitory effect of 3.125–50 mMMANIO was determined

–8 independent experiments; values significantly different from empty vector:

nt the protein expression levels of mutp53 in untreated H1299-transfected cells

t (representative images are shown in Figure S4A). Data are means ± SEMs

p < 0.05 **p < 0.01; ***p < 0.001; 1-way ANOVA with Dunnett’s multiple com-

optosis was analyzed by flow cytometry using FITC-annexin V and PI. Data are

DMSO: *p < 0.05; unpaired Student’s t test.

MANIO, in mutp53 R248W-silenced (sip53) and control (CTRL) SW837 cells

37 cells after 24 h of treatment, determined by qRT-PCR. Fold of induction is

ans ± SEMs of 3 independent experiments; values significantly different from

comparisons test.

cells, after 24 h of treatment with MANIO, determined by ChIP. Immunopre-

gative control (IgG). The enrichment of DNA fragments was analyzed by qPCR,

ts); values significantly different from DMSO: **p < 0.01; ***p < 0.001; 2-way

837 cells.

at different temperatures.

at 40�C. (J and L) Plotted data represent the amount of non-denatured p53 after

crease was calculated, setting the amount of non-denatured mutp53 obtained

lues significantly different from DMSO: *p < 0.05; **p < 0.01; ***p < 0.001; 2-way

enching of 5 mMmutp53 R248W recombinant protein uponMANIO titration. Kd

uation described in Method details.

eriments; GAPDH was used as a loading control.
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mutp53 with high clinical prevalence. This indicated that the

binding mode of MANIO may occur irrespective of the formation

of particular pockets derived from specific mutation sites, as

observed with the binding of Phikan083 to mutp53 Y220C

(Boeckler et al., 2008). Interestingly, MANIO was highly effective

against mutations with particular interest in a CRC context,

namely on R248Q and R248W mutations that have similar fre-

quencies and may exhibit GOF in CRC (Schulz-Heddergott

et al., 2018). In fact, cancer patients carrying mutp53 R248Q/W

have been associated with lower survival rates than those with

other mutp53 forms (Schulz-Heddergott et al., 2018). mutp53

R248Q GOF accelerated tumor onset (Hanel et al., 2013), and

knockin mice exhibited a broader tumor spectrum, shorter over-

all survival, and metastasis formation (Schulz-Heddergott et al.,

2018).Mutp53 R248Walso interactedwith nucleaseMre11, sup-

pressing the binding of the Mre11–Rad50–NBS1 complex to

DNA double-stranded breaks, and subsequently inhibiting

ataxia-telangiectasia mutated (ATM)-dependent DNA repair

(Song et al., 2007). Here, we showed the restoration of the WT-

like DNA-binding ability and transactivation function of mutp53

R248W by MANIO, with subsequent upregulation of p53 tran-

scriptional targets involved in cell-cycle arrest (p21) and

apoptosis (BAX and PUMA). As with WTp53, the direct interac-

tion of MANIO with mutp53 R248W, leading to its thermal stabil-

ity, was also demonstrated. Importantly, molecular docking (MD)

simulations and cluster analysis to the complex of WTp53 DBD

and mutp53 R248W DBDwith MANIO (fully described in Method

details) showed that this ligand binds to a pocket formed be-

tween one dimer of the WTp53 DBD protein and the minor

groove of the DNA molecule (Figure S6A). MANIO interacts

with theWTp53 DBD protein backbone through hydrogen bonds

between its hydroxyl groups and the amide backbone groups of

methionine 243 of chain A (M243A) and methionine 243 of chain

B (M243B) (each belong to a different monomer). The remaining

interactions of MANIO are stacking interactions made with the

bases of DNA (DG8, DG12) (Figure S6A). In the case of the

mutp53 R248W, in most clusters, the ligand makes a hydrogen

bond between one of its hydroxyl oxygen atoms and the W248

side-chain nitrogen. The ligand phenyl group is close to the

DNA bases adenine 6 and thymine 7 (Figure S6B). These results

prompted us to realize that ligandswith a flexible T shape confor-

mation are able to fit perfectly between the DNA molecule and

the protein pocket at the dimer interface in a stable way (Sun

et al., 2012). Therefore, we anticipate a mechanism of p53 acti-
Figure 5. MANIO has in vivo p53-dependent antitumor activity by inhib

(A–I) Swiss nude mice carrying HCT116 p53+/+ (A–C), SW837 (D–F), and HCT11

MANIO or vehicle (control), twice per week during 2weeks (6 animals/group); value

Dunnett’s multiple comparisons test. Tumor weight of mice carrying HCT116 p

treatment with MANIO or vehicle; data are means ± SEMs; values significantly d

carrying HCT116 p53+/+ (C), SW837 (F), and HCT116 p53�/� (I) xenografts durin

MANIO-treated mice: p > 0.05; 2-way ANOVA with Dunnett’s multiple compariso

(J) Representative images of Ki67, BAX, DNA fragmentation (TUNEL), and p53

xenografts treated with MANIO or vehicle, collected at the end of the treatment

(K) Percentage of positive-staining Ki67 cells.

(L) Quantification of BAX staining evaluated by 3,30-diaminobenzidine (DAB) inte

(M) Percentage of positive-staining TUNEL cells.

(N) Quantification of p53 staining evaluated by DAB intensity.

In (K)–(N), data are means ± SEMs of 3 independent experiments; values signific
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vation by MANIO as a bridging molecule between p53 and

DNA, which may eventually compensate for the loss of direct

contacts between lysine 248 residue and the DNA. However, it

must be noted that the ability of MANIO to promote the proper

folding of structural p53 mutants, such as R175H, remains to

be addressed.

The p53-dependent antitumor activity of MANIO was further

confirmed in CRC xenograft mouse models. In fact, in tumors ex-

pressing WT- or mutp53, MANIO inhibited tumor cell proliferation

and induced apoptosis, while it did not significantly interfere with

the growth of p53 knockout tumors. Interestingly, in accordance

with the WTp53 stabilization observed in CRC cells, a marked in-

crease in the p53 levels was also observed in WTp53-expressing

tumor tissues treated with MANIO. However, in mutp53-express-

ing tumor tissues, MANIO significantly reduced the levels of

mutp53. Of note, much higher levels of p53 could be observed

in control tumors expressingmutp53 compared to those express-

ing WTp53. Although the mechanism of mutp53 accumulation in

tumors remains not fully understood, the disruption of the p53-

MDM2 loop can constitute a potential explanation. Actually, the

inability of mutp53 to transcriptionally induce MDM2 and of

MDM2 to interact and degrade mutp53 in cancer cells greatly re-

duces the overall mutp53degradation by ubiquitination (Yue et al.,

2017). In fact, mutp53 accumulation in tumors has been consid-

ered critical for the occurrence of mutp53 GOF, contributing to

the development of more advanced tumors. As such, lower

mutp53 levels have been correlated with improved survival

rates (Huang et al., 2014), strongly supporting the depletion of

mutp53 as a positive marker of cancer therapeutic response

(Yue et al., 2017). The restoration of the WT-like function to

mutp53 by MANIO, with reestablishment of the p53-MDM2 feed-

back loop, may explain the reduction in mutp53 expression to

similar levels to WTp53-expressing tumor tissues.

No signs of toxicity or morbidity were noticed in MANIO-

treated mice. Consistently, MANIO showed much lower

growth-inhibitory activity in normal colon cells. In fact, in the

case of WTp53 activators, it would be expected that these

agents may also activate p53 in normal cells, exhibiting undesir-

able toxic side effects. Nonetheless, some authors have shown

that normal tissues were not significantly affected by genetic

re-establishment of p53 (Christophorou et al., 2005). In partic-

ular, it was demonstrated that p53-activating signals triggered

by acute radiation injury in normal radiosensitive tissues rapidly

attenuated, as the damage was promptly resolved.
iting proliferation and enhancing apoptosis

6 p53�/� (G–I) xenografts were treated intraperitoneally with 50 or 100 mg/kg

s significantly different from vehicle: *p < 0.05, ***p < 0.001; 2-way ANOVAwith

53+/+ (B), SW837 (E), and HCT116 p53�/� (H) xenografts, at the end of the

ifferent from vehicle: *p < 0.05; unpaired Student’s t test. Body weight of mice

g MANIO or vehicle treatment; no significant differences between vehicle and

ns test.

detection in tumor tissues of HCT116 p53+/+, SW837, and HCT116 p53�/�

(scale bar, 10 mm; magnification 3 200).

nsity.

antly different from vehicle: **p < 0.01; ***p < 0.001; unpaired Student’s t test.
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The antitumor potential of MANIO through the activation of a

p53 pathway was further validated in patient-derived CRC cells.

In fact, MANIO upregulated the mRNA levels of several p53 tran-

scriptional targets involved in cell-cycle arrest and apoptosis,

while downregulating genes involved in angiogenesis (VEGF)

and cancer development and chemoresistance (BIRC5/Survi-

vin). Survivin plays a crucial role in the pathogenesis of CRC (Wil-

liams et al., 2003), being its upregulation associated with poor

prognosis (Huang et al., 2013) and resistance of tumor cells to

radiotherapy and chemotherapy (Waligórska-Stachura et al.,

2012). As such, downregulation of survivin levels by MANIO

will improve the CRC therapeutic response.

Importantly, MANIO displayed its highest antiproliferative effect

on cells derived from ametastatic CRC patient (CCZ2), previously

subjected to standard therapeutic regimens (5-FU, oxaliplatin)

combined with the anti-angiogenic agent bevacizumab. MANIO

also showed marked antitumor activity against patient-derived

cells expressing the missense p53 DBD mutation P151S

(CCA8). Although not being a hotspot TP53 mutation, its clinical

relevance should not be disregarded, since its occurrence within

the exon 5 of TP53 is associatedwith worse outcomes in proximal

colon cancers (Russo et al., 2005).

CRC treatments have encompassed the use of conventional

chemotherapeutic drugs, including 5-FU, platinum-based

agents, and topoisomerases inhibitors (Cremolini et al., 2015).

Their combination with targeted therapy has greatly improved

the median overall survival of CRC patients, minimizing toxicity

and counteracting frequent drug resistance (Yau, 2019). Here,

we revealed that low doses of MANIO had synergistic effects

with DOXO, 5-FU, and CISP, in immortalized and patient-derived

CRC cells. These DNA-damaging drugs are highly dependent on

functional p53 to trigger cell death, therefore benefiting CRC pa-

tients harboring mutp53 (Russo et al., 2005; Iacopetta, 2003).

This study also revealed promising synergistic effects of MANIO

in patient-derived CRC cells expressing WTp53. In fact, most of

the DNA-damaging agents generally promote post-translational

modifications of p53 in its C-terminal and N-terminal, preventing

p53 degradation and causing its accumulation (Appella and An-

derson, 2001). p53 activators, including MANIO, can act as a

thermodynamic stabilizer of the WT DBD conformation,

increasing p53 activity and subsequently triggering an apoptotic

cell death and modifying factors that are involved in the thera-

peutic response. In the particular case of MANIO, it may be

related, for example, to its ability to increase the levels of Bax,

while decreasing survivin in WTp53-expressing patient-derived

CRC cells.

This work also shows that MANIO has adequate drug-likeness

and pharmacokinetic properties for its clinical translation. Even

though MANIO exhibited poor solubility in low pH aqueous sol-

vents, indicating pH-dependent solubility, this limitation can be

overcome using pharmaceutically acceptable counter ions that

can provide favorable pH conditions upon dissolution in water.

This may render the pH of resulting solution closer to the

maximum pH of the compound, translating into better absorp-

tion rates (Kalepu and Nekkanti, 2015). In fact, many approved

orally administered anticancer drugs exhibit this pH-dependent

solubility, and the oral bioavailability of these agents was signif-

icantly influenced when co-administered with acid-reducing
agents (e.g., proton pump inhibitors, H2-receptor antagonists,

antacids) (Budha et al., 2012). Salt forms of the compounds

may also avoid pH adjustments necessary for their solubilization,

as salt formation can improve the crystallinity, stability, and phar-

maceutical processing of drugs (Kalepu and Nekkanti, 2015;

Béni et al., 2007). MANIO efflux in intestinal epithelium can

constitute an additional limitation for oral administration, due to

overexpression of the drug efflux pump P-glycoprotein (P-gp).

In fact, P-gp is frequently overexpressed in the intestinal

epithelium, where it can limit the oral bioavailability of anticancer

drugs. Several P-gp inhibitors, such as tariquidar, elacridar, and

ONT093, have advanced to clinical development in combination

therapy to increase the oral bioavailability of anticancer drugs

(Dash et al., 2017).

In conclusion, compelling evidence is herein provided sup-

porting the therapeutic potential of MANIO as an anticancer

drug candidate in personalized cancer treatment, particularly

of CRC, either as a single agent or in combination with conven-

tional chemotherapeutics.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

BAX (6A7) (Mouse monoclonal) Thermo Scientific Cat# MA5-14003; RRID: AB_626728

BCL-2 (C-2) (Mouse monoclonal) Santa Cruz Biotechnology Cat# sc-7382; RRID: AB_626736

CLEAVED PARP (C2-10) (Mouse monoclonal) Santa Cruz Biotechnology Cat# sc-53643; RRID: AB_785086

GADD45 alpha (Rabbit polyclonal) Merck Millipore Cat# ABE2696

GAPDH (6C5) (Mouse monoclonal) Santa Cruz Biotechnology Cat# sc-32233; RRID: AB_627679

KI67 (SP6) (Rabbit monoclonal) Thermo Scientific Cat# MA5-14520; RRID: AB_10979488

KILLER/DR5 (D-6) (Mouse monoclonal) Santa Cruz Biotechnology Cat# sc-166624; RRID: AB_2204942

MDM2 (SMP14) (Mouse monoclonal) Santa Cruz Biotechnology Cat# sc-965; RRID: AB_627920

Normal mouse IgG immunoglobulin Santa Cruz Biotechnology Cat# sc-2025; RRID: AB_737182

p21 (C-19) (Rabbit polyclonal) Santa Cruz Biotechnology Cat# sc-397; RRID: AB_632126

p53 (DO-1) (Mouse monoclonal) Santa Cruz Biotechnology Cat# sc-126; RRID: AB_628082

PUMA (B-6) (Mouse monoclonal) Santa Cruz Biotechnology Cat# sc-377015; RRID: AB_2714161

Anti-mouse HRP-conjugated Santa Cruz Biotechnology Cat# sc-2005; RRID: AB_631736

Anti-rabbit HRP-conjugated Santa Cruz Biotechnology Cat# sc-2004; RRID: AB_631746

Bacterial strains

Escherichia coli BL21 (DE3) NZYTech Cat# MB00401

Biological samples

Patient-derived colorectal cancer cells This paper N/A

Chemicals, peptides, and recombinant proteins

Doxorubicin Sigma-Aldrich Cat# D1515

Etoposide Calbiochem Cat# 80055-248

Cisplatin Enzo Life Science Cat# BML-GR356

5-Fluorouracil Enzo Life Science Cat# ALX-480-099-G005

Penicillin-Streptomycin Biosera Cat# XC-A4122

Ciprofloxacin Merck Cat# 17850

Piperacillin plus tazobactam Merck Cat# P8396

Amphotericin B Merck Cat# 171375

Cycloheximide Sigma-Aldrich Cat# C4859

Critical commercial assays

IllustraTM RNAspin Mini RNA Isolation kit GE Healthcare Cat# GE25-0500-71

OxiSelect Comet Assay kit Cell Biolabs Cat# STA-351

MycoAlert PLUS mycoplasma detection kit Lonza Cat# LT07-118

Annexin V-FITC Apoptosis DetectionKKit I BD Biosciences Cat#556547

ECL Amersham kit GE Healthcare Cat# GERPN2209

Deposited data

RNA-sequencing data This paper https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE145482

GEO: GSE145482

Experimental models: cell lines

A431 ATCC ATCC� CRL-1555

H1299 ATCC ATCC� CRL-5803

NCI-H460 ATCC ATCC� HTB-177

HCC1937 ATCC ATCC� CRL-2336

MCF-7 ATCC ATCC� HTB-22

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MDA-MB-231 ATCC ATCC� HTB-26

MDA-MB-468 ATCC ATCC� HTB-132

CCD-18Co ATCC ATCC� CRL-1459

HCT116 p53+/+ B. Vogelstein, The Johns Hopkins Kimmel

Cancer Center, Baltimore, MD, USA

N/A

HCT116 p53�/� B. Vogelstein, The Johns Hopkins Kimmel

Cancer Center, Baltimore, MD, USA

N/A

HT-29 ATCC ATCC� HTB-38

LS-1034 ATCC ATCC� CL-187

SW837 ATCC ATCC� CCL-235

IGROV-1 Leonor David, Instituto de Investigaç~ao e

Inovaç~ao em Saúde, Porto, Portugal

N/A

SK-OV-3 Leonor David, Instituto de Investigaç~ao e

Inovaç~ao em Saúde, Porto, Portugal

N/A

Experimental models: organisms/strains

Female Swiss nude mice Charles River N/A

Oligonucleotides

Primers for qPCR

B2M FW: AGGCTATCCAGCGTACTCCA This paper N/A

B2M RV: ATGGATGAAACCCAGACACA This paper N/A

BAX FW: GCTGTTGGGCTGGATCCAAG This paper N/A

BAX RV: TCAGCCCATCTTCTTCCAGA This paper N/A

BIRC5 FW: GACGACCCCATAGAGGAACAT This paper N/A

BIRC5 RV: CGCACTTTCTCCGCAGTTTC This paper N/A

BRCA1 FW: CACTCAGCAGAGGGATACCA This paper N/A

BRCA1 RV: GAGTTGTTCCTTTGGCCATGT This paper N/A

CDKN1A FW: CTGGAGACTCTCAGGGTCGAAA This paper N/A

CDKN1A RV: GATTAGGGCTTCCTCTTGGAGAA This paper N/A

E2F1 FW: CTACGTGACGTGTCAGGACC This paper N/A

E2F1 RV: CTGAAAGTTCTCCGAAGAGTCCA This paper N/A

EXO1 FW: GCCTGGCCCAGAAGAAACTT This paper N/A

EXO1 RV: CTGGGATTCACTAGTTCTCTCAGAT This paper N/A

FANCA FW: TGGAGCTCAAGGGTCAGGG This paper N/A

FANCA RV: CCAGCAGCTCTGCCACG This paper N/A

GADD45A FW: TCAGCGCACGATCACTGTC This paper N/A

GADD45A RV: CCAGCAGGCACAACACCAC This paper N/A

GAPDH FW: GGCCAAGGTCATCCATGA This paper N/A

GAPDH RV: TCAGTGTAGCCCAGGATG This paper N/A

HSP90AB1 FW: CGCATGAAGGAGACACAGAA This paper N/A

HSP90AB1 RV: TCCCATCAAATTCCTTGAGC This paper N/A

MDM2 FW: GGCCTGCTTTACATGTGCAA This paper N/A

MDM2 RV: GCACAATCATTTGAATTGGTTGTC This paper N/A

NOXA FW: AGCTGGAAGTCGAGTGTGCT This paper N/A

NOXA RV: TCCTGAGCAGAAGAGTTTGGA This paper N/A

PUMA FW: CCTGGAGGGTCCTGTACAATCT This paper N/A

PUMA RV: GCACCTAATTGGGCTCCATCT This paper N/A

TNFRSF10B FW: TGACTCATCTCAGAAATG

TCAATTCTTA

This paper N/A

TNFRSF10B RV: GGACACAAGAAGAAAAC

CTTAATGC

This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

VEGF FW: GCTCGGTGCTGGAATTTGAT This paper N/A

VEGF RV: TCACTCACTTTGCCCCTGTC This paper N/A

YWHAZ1 FW: CAACACATCCTATCAGACTGGG This paper N/A

YWHAZ1 RV: AATGTATCAAGTTCAGCAATGGC This paper N/A

Primers for ChIP

ACTIN B FW: TCTCCCTCCTCCTCTTCCTCAAT This paper N/A

ACTIN B RV: TCGCGCCGCTGGGTTTTATA This paper N/A

CDKN1A FW: GTGGCTCTGATTGGCTTTCTG This paper N/A

CDKN1A RV: CTCCTACCATCCCCTTCCTC This paper N/A

MDM2 FW: GAGGTCCGGATGATCGCAG This paper N/A

MDM2 RV: GGAAAATGCATGGTTTAAATAGCC This paper N/A

Recombinant DNA

pETM20-mutp53 (Gomes et al., 2018) N/A

Software and algorithms

GraphPad v7.0 Prism N/A

STAR v2.5.3a (Dobin et al., 2013) N/A

FlowJo v10.0.7 Tree Star N/A

Image Lab v5.2.1 Bio-Rad Laboratories N/A

ImageJ v1.50i (Schneider et al., 2012) N/A

AutoDock 4.2.6 The Scripps Research Institute N/A

Lamarckian genetic algorithm (Morris et al., 1998) N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Lucı́lia

Saraiva (lucilia.saraiva@ff.up.pt).

Materials availability
This study did not generate new unique reagents.

Data and code availability
To review GEO accession GSE145482, please go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145482, and enter

token adobywykjvmbpgd into the box.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human cell lines
Human cell lines used are described in Key Resources Table; cells were routinely cultured in RPMI-1640 medium with

UltraGlutamine (Lonza, VWR), excepting CCD-18Co cells that were cultured in EMEM (Lonza, Ingrenor, Porto, Portugal), supplemented

with 10% fetal bovine serum (FBS; GIBCO, Alfagene, Lisboa, Portugal), and maintained at 37�C with 5% CO2. Cells were routinely

tested for mycoplasma infection and recently characterized and authenticated using short tandem repeat DNA profiling.

Patient-derived CRC cells
Patient-derived CRC cell lines are described in Key resources table. Patient gender and age are referred in Table S1. Cells were es-

tablished from tumor tissue samples with written informed consent approved by the Ethics Committee of the St. Anne’s University

Hospital Brno (ref. no. 74V/2018) or from tumor tissue samples provided through Bank of Biological Material (MasarykMemorial Can-

cer Institute, Brno) which is a part of Biomolecular Resources Research Infrastructure (BBMRI). Tumor tissues pieces were cultured in

DMEMcomplete culturemedium supplemented with 10% fetal calf serum, 2mMglutamine (all fromBiosera, Nuaille, France), 100 IU/

mL penicillin, 100 mg/mL streptomycin, 10 mg/mL ciprofloxacine, 400 mg/mL piperacilin plus tazobactam, and 1,25 mg/mL amphoter-

icin B (all antibiotics described in Key resources table). Outgrowing cells were then subcultured into complete growth medium with

penicillin and streptomycin only.
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Animals
Animal experiments were conducted according to the EU Directive 2010/63/EU and to the National Authorities. The study was

approved by the local Animal Welfare Body (Ref. ORBEA-5-2016). Female Swiss nude mice (Charles-River Laboratories, Barcelona,

Spain) were housed under pathogen-free conditions in ventilated cages. For the in vivo antitumor assays, 10 to 12 weeks old mice

were used.

METHOD DETAILS

Compounds
MANIOwas synthesized as described (Soares et al., 2013). Compounds were dissolved in dimethyl sulfoxide (DMSO; Sigma-Aldrich,

Sintra, Portugal), excepting cisplatin that was dissolved in saline. In all experiments, the solvent (0.1 – 0.25%DMSO) was included as

control.

Cell viability and proliferation assays
For sulforhodamine B (SRB) assays, cells were seeded in 96-well plates at 4.03 103 (NCI-H460), 5.03 103 (HCT116,MCF-7,MDA-MB-

468, LS-1034, CCD-18Co, HT-29, IGROV-1, A431, and SK-OV-3), 7.5 3 103 (SW837 and H1299) or 1.0x104 (HCC1937) cells/well, as

reported (Soares et al., 2015). ForMTT assays, patient-derivedCRCcellswere seeded in 96-well plates at 33 103 cells/well, as reported

(Sramek et al., 2018). Half maximal inhibitory concentration (IC50) values were determined as described (Soares et al., 2015).

For colony formation assays, HCT116 (p53+/+ and p53�/�) and SW837 cells were seeded in 6-well plates at 1.03 103 and 2.53 103

cells/well, respectively, and incubated withMANIO for 11-14 days. Formed colonies were fixed, stained and analyzed as reported (Rai-

mundo et al., 2018).

Transient transfection of mutp53 in human H1299 tumor cells
For ectopic expression of mutp53, p53 null H1299 cells were transfected with 75 ng of pcDNA3mammalian expression vectors encod-

ing full-length human mutp53 (R280K, R175H, G245D, G245S, R248Q, R248W, R273H, R273C, Y220C or R282W), or empty pcDNA3,

as described (Gomes et al., 2020).

Cell cycle and apoptosis analysis
HCT116 (p53+/+ and p53�/�) and SW837 cells were seeded in 6-well plates at 1.53 105 or 2.253 105 cells/well respectively, for 24 h,

followed by treatment with MANIO. Cell cycle and apoptosis were analyzed as reported (Soares et al., 2015; Gomes et al., 2019).

Western blot analysis
HCT116 (p53+/+ and p53�/�) and SW837 cells were seeded in 6-well plates at 1.5 3 105 and 2.25 3 105 cells/well respectively, and

patient-derived CRC cells in ⌀100mmPetri dishes at 33 105 cells/dish, for 24 h, followed by treatment with MANIO. Protein extracts

were analyzed as described (Raimundo et al., 2018). Antibodies are listed in Key resources table.

Cycloheximide (CHX) assay
HCT116p53+/+ cells were seeded in 6-well plates at 1.5 3 105/well for 24 h, followed by treatment with MANIO. Cells were then

treated with 150 mg/mL CHX for up to 4 h. p53 expression was analyzed by western blot as described above.

RNA extraction and RT-qPCR
HCT116 (p53+/+ and p53�/�) and SW837 cells were seeded in 6-well plates at 1.5 3 105 and 2.25 3 105 cells/well respectively, and

patient-derived CRC cells in ⌀100mmPetri dishes at 33 105 cells/dish, for 24 h, followed by treatment with MANIO. For HCT116 and

SW837 cells, total RNA extraction and RT-qPCR were performed as described (Soares et al., 2017). For patient-derived CRC cells,

total RNA extraction and RT-qPCR were performed as described (Sramek et al., 2018). Primers are listed in Key resources table.

Chromatin immunoprecipitation (ChIP) assay
HCT116 p53+/+ and SW837 cells were seeded in 75 cm2 flasks at 1.5 3 106 and 2.25 3 106 cells/well respectively, for 24 h, and

treated with MANIO for additional 24 h. ChIP was performed as described (Alessandrini et al., 2018). Mouse monoclonal anti-p53

antibody was used for immunoprecipitation, and normal mouse IgG immunoglobulin was used as negative control. p53 occupancy

at the gene promoters was measured by RT-qPCR. Primers are listed in Key resources table.

RNA sequencing (RNA-seq)
HCT116p53+/+ cells were seeded in 75 cm2 flasks at 1.53 106 cells/well, for 24 h, and treated with MANIO. Total RNA was extracted

using the IllustraTM RNAspin Mini RNA Isolation Kit (GE Healthcare, Milan, Italy). RNA integrity was checked by the Agilent 2100 Bio-

analyzer (Agilent Technologies, Milan, Italy), discarding preparations with RIN (RNA integrity number) values 8. Sequencing libraries

were produced following the TruSeq RNA Library kit v2 protocol (Illumina, ThermoFisher) and using 1 mg of RNA as input. All samples

were sequenced using HiSeq 2500, obtaining z25M raw reads per sample. Raw sequence files were subjected to quality control
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analysis using FastQC v1.3 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Transcript quantification was conducted

with STAR v2.5.3a (Dobin et al., 2013) (assigned to a gene using the GENCODE annotation v27, using the STAR function ‘‘quantMode

GeneCounts’’) mapped to the human genome version GRCh38 andwith reference annotation. Read counts generated by STARwere

analyzed by using DESeq2 package (Love et al., 2014) for detecting differentially expressed genes (DEGs). An adjusted p-value cut

off of 0.05 was decided as threshold for detection of DEGs. Starting from the expression matrix, genes considered as differentially

regulatedwere analyzed using hierarchical clusteringmethod (cluster function, stats package). The enriched annotation table results,

obtained in the web site, were then downloaded to be processed in R/bioconductor and visualized using ggplot2 package. The com-

bined score is a combination of the logarithm of the p-value computed using the Fisher’s exact test and the rank score computed

using a modification to Fisher’s exact test, in which it was computed a z-score for deviation from an expected rank. Visualization

of the clustering and heatmap of log2-normalized counts (TMM method) were obtained using gplots package. To explore the

high-dimensional property of the data, the PCA (Principal Component Analysis), as dimensionality reduction algorithm implemented

in stats package, was used. For th%e Functional Annotation analyses, Enricher web tools were used.

p53 siRNA
SW837 cells were transfected with 100 nM of siRNA against p53 (SMARTpool p53) and negative nonspecific siRNA (Non-targeting

Pool), for 72h, as reported (Soares et al., 2016), and then seeded at 2.253 105 cells/well, followed by MANIO treatment. Protein ex-

tracts were analyzed by western blot as described above.

Cellular thermal shift assay (CETSA)
CETSA experiments were performed as reported (Tan et al., 2015; Raimundo et al., 2018). In whole SW837 cells, treatments with

MANIO were carried out for 4 h. Soluble protein was detected by western blot as described above.

Comet assay
The alkaline comet assay was used to evaluate DNA damage HCT116 p53+/+ cells, as described (Raimundo et al., 2018). Tail DNA

was quantified using Fiji Software (Open Comet/ImageJ) (Gyori et al., 2014; Schindelin et al., 2015).

Micronucleus test
The cytokinesis block micronucleus assay in human lymphocytes was performed as described (Soares et al., 2017).

Recombinant human wt and mutp53 R248W DBD protein production
Human wt and mutp53 R248W DBD were subcloned into the vector pETM-20 as described (Gomes et al., 2018), but with some mod-

ifications. Escherichia coli cells, expressing recombinant proteins, were harvested by centrifugation and chemically lysed in NZY Bac-

terial Cell Lysis Buffer (Nzytech, Lisboa, Portugal), 5mM dithiothreitol (DTT), and 10 mM Zn(CH3CO2)2 following manufacturer’s instruc-

tions. Samples were filtrated (0.2 mm), loaded onto a HiTrap Heparin HP column (GE Healthcare, VWR), and proteins eluted with a NaCl

step gradient (0 - 0.3 M) at 1.5 mL/min. Further purification was achieved by gel filtration chromatography using a HiPrep 16/60 Se-

phacryl S-100 High-Resolution column (GE Healthcare, VWR) in a Fast Protein Liquid Chromatography (FPLC) system (Pharmacia

Biotechnology, GE Healthcare, VWR). Running buffer contained 50 mM HEPES pH 7.5, 5 mM DTT, 10 mM Zn (CH3CO2)2, and

150 mM NaCl. Pure protein fractions were analyzed using SDS-polyacrylamide gel electrophoresis, while protein concentration was

measured spectrophotometrically.

Protein-ligand interaction by fluorescence quenching
Evaluation of the binding of MANIO to recombinant human wtp53 and mutp53 R248W DBD was based on the quenching of the pro-

teins’ intrinsic fluorescence. Phosphate buffer consisting of 50 mM HEPES, 5 mM DTT, 10 mM Zn (CH3CO2)2, and 150 mM NaCl

(pH 7.5) was used in the preparation of all solutions. Briefly, 5 mM of each protein, increasing concentrations of drug solution

(0 – 75 mM) and phosphate buffer solution (pH 7.5) were mixed to a final volume of 280 mL. Fluorescence emission spectra were re-

corded at room temperature (23 ± 1�C) in a microplate reader (Synergy HT Multi-Detection Microplate Reader, BioTek�, Izasa Sci-

entific) in the range of 300 – 350 nm upon excitation at 260 nm.

Proteins-MANIO binding parameters were calculated using the Origin 8.5.1 software v8.5.1 (OriginLab Corporation, Northampton,

MA, USA). The fitting of the experimental values was made according to the Langmuir binding equation. The protein binding param-

eters of the interactionmonitored by fluorescencewere calculated through the fitting of the experimental points to the following equa-

tion (adapted from Fernandes et al., 2017):

½protein�MANIO� = I0
I
� 1=

ynmax

1+ Kd

½MANIO�

where I0 and I are the fluorescence intensities in the absence and presence of MANIO, respectively, ymax corresponds to the highest

quenching induced by MANIO, n accounts for the number of binding sites, and Kd corresponds to the dissociation constant of

protein-MANIO complexes.
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In vivo antitumor and toxicity assays
Xenograft tumor assays were performed as described (Soares et al., 2017). Briefly, 1 3 106 (HCT116 p53+/+ and p53�/�) or 5 3 106

(SW837) cells were inoculated subcutaneously in mice dorsal flank. When tumors reached approximately 100 mm3 volume, treat-

ment started by intraperitoneal injections, twice a week with MANIO or vehicle (six animals/group), for two weeks. Tumor volumes,

body weights or any signs of morbidity were regularly monitored until the end of the treatment. At the end of the study, animals were

sacrificed by cervical dislocation and blood samples and organs (kidneys, spleen, heart, and liver) were collected for toxicological

analysis.

Immunohistochemistry (IHC)
Preparation of tissues of HCT116 (p53+/+ and p53�/�) and SW837 tumors, staining with H&E or antibodies, assessment of TUNEL-

positive cells, evaluation of 3,30-diaminobenzidine (DAB) intensity, quantification of marked cells, and images acquisition were per-

formed as described (Soares et al., 2017). Antibodies are listed in Key resources table.

Combination therapy assays
SW837 and patient-derived primary CCZ3 cells were treated with fixed concentrations of MANIO and increasing concentrations of

doxorubicin (DOXO), cisplatin or 5-Fluorouracil (5-FU). The effect of combined treatments on cell proliferation was analyzed by SRB

or MTT assays, for SW837 or CCZ3 cells, respectively, as described above. Combination index (CI) and dose reduction index (DRI)

values were determined as described (Chou and Talalay, 1984; Raimundo et al., 2018).

Drug pharmacokinetic (PK) studies
In vitro (Eurofins, France) and in vivo (Pharmacology Discovery Services, Taiwan) PK assays were subcontracted.

In vitro PK assays
Description of in vitro PK assays.
Assay Technique Incubation Detection method Reference

Aqueous solubility (simulated gastric fluid) 24 h RT HPLC-UV/VIS (Lipinski et al., 2001)

Aqueous solubility (simulated intestinal fluid) 24 h RT HPLC-UV/VIS (Lipinski et al., 2001)

Aqueous solubility (PBS, pH 7.4) 24 h RT HPLC-UV/VIS (Lipinski et al., 2001)

Partition coefficient (LogD, n-octanol/PBS, pH 7.4) Shake-flask 60 min RT HPLC-MS/MS (Sangster, 1997)

Protein binding (plasma, human) Equilibrium dialysis 4 h 37�C HPLC-MS/MS (Banker et al., 2003)

A-B permeability (Caco-2, pH 6.5/7.4) 0 and 60 min RT HPLC-MS/MS (Hidalgo et al., 1989)

B-A permeability (Caco-2, pH 6.5/7.4) 0 and 40 min RT HPLC-MS/MS (Hidalgo et al., 1989)

Intrinsic clearance (human liver

microsomes – 0.1 mg/mL)

0, 15, 30, 45, 60min RT HPLC-MS/MS (Obach et al., 1997)
A – Apical; B – Basal; HPLC-UV/VIS – High performance liquid chromatography – UV/Visible detector; HPLC-MS/MS – High Per-

formance Liquid Chromatography Mass Spectrometry; RT – Room Temperature.

Aqueous solubility (mM) was determined by comparing the peak area of the principal peak in a calibration standard (200 mM) con-

taining organic solvent (methanol/water, 60/40, v/v) with the peak area of the corresponding peak in a buffer sample. In addition,

chromatographic purity (%) was defined as the peak area of the principal peak relative to the total integrated peak area in the

HPLC chromatogram of the calibration standard.

The total amount of compound was determined as the peak area of the principal peak in a calibration standard (100 mM) containing

organic solvent (methanol/water, 60/40, v/v). The amount of compound in buffer was determined as the combined, volume-

corrected, and weighted areas of the corresponding peaks in the aqueous phases of three organic-aqueous samples of different

composition. An automated weighting system was used to ensure the preferred use of raw data from those samples with well quan-

tifiable peak signals. The amount of compound in organic was calculated by subtraction. Subsequently, LogD was calculated as the

Log10 of the amount of compound in the organic phase divided by the amount of compound in the aqueous phase.

The peak areas of the test compound in the buffer and test sampleswere used to calculate percent binding and recovery according

to the following formulas:

Protein binding ð%Þ =
Areap � Areab

Areap
3 100
Recovery ð%Þ =
Areap +Areab

Areac
3100
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where

Areap = Peak area of analyte in protein matrix

Areab = Peak area of analyte in buffer

Areac = Peak area of analyte in control sample

The apparent permeability coefficient (Papp) of the test compound was calculated as follows:

Papp ðcm = sÞ =
VR 3CR;end

Dt
3

1

A3 ðCD;md � CR;midÞ
where VR is the volume of the receiver chamber. CR,end is the concentration of the test compound in the receiver chamber at the end

time point,Dt is the incubation time, and A is the surface area of the cell monolayer. CD,mid is the calculatedmid-point concentration of

the test compound in the donor side, which is themean value of the donor concentration at time 0minute and the donor concentration

at the end time point. CR,mid is the mid-point concentration of the test compound in the receiver side, which is one half of the receiver

concentration at the end time point. Concentrations of the test compound were expressed as peak areas of the test compound.

The recovery of the test compound was calculated as follows:

Recovery ð%Þ =
VD 3CD;end +CR;end

VD 3CD0

3 100

where VD and VR are the volumes of the donor and receiver chambers, respectively. CD,end is the concentration of the test compound

in the donor sample at the end time point. CR,end is the concentration of the test compound in the receiver sample at the end time

point. CD0 is the concentration of the test compound in the donor sample at time zero. Concentrations of the test compound are ex-

pressed as peak areas of the test compound.

For permeability assays, lucifer yellowwas used as the cell monolayer integrity marker. Lucifer yellow permeability assessment (in the

Apical to Basal (A-B) direction at pH 7.4 on both sides) was performed after the permeability assay for the test compound. The cell

monolayer that had a Lucifer yellow permeability of less than 1.5 3 10�6 cm/s for Caco-2 and MDR1-MDCKII cells and 2.5 3 10�6

cm/s for MDCKII cells was considered intact, and the permeability result of the test compound from intact cell monolayer is reported.

For intrinsic clearance determinations, metabolic stability, expressed as percent of the parent compound remaining, was calcu-

lated by comparing the peak area of the compound at the time point relative to that at time-0. The half-life (T1/2) was estimated

from the slope of the initial linear range of the logarithmic curve of compound remaining (%) versus time, assuming the first-order

kinetics. The apparent intrinsic clearance (CLint, in mL/min/pmol, mL/min/mg or mL/min/Mcell) was calculated according to the

following formula:

CLint =
0:693

T1=2 3 ðmg protein=mL or million cells=mL or pmol CYP isoyme=mLÞ:
In vivo PK assays
Animals

Male ICRmiceweighing 25 ± 5 gwere provided byBioLasco Taiwan (under Charles River Laboratories Licensee). Animalswere accli-

mated for 3 days prior to use and were confirmed with good health. All animals were maintained in a hygienic environment with

controlled temperature (20 - 24�C), humidity (30% - 70%) and 12 hours light/dark cycles. Free access to sterilized standard lab

diet [MFG (Oriental Yeast Co., Ltd., Japan)] and autoclaved tap water were granted. All aspects of this work, including housing,

experimentation, and disposal of animals were performed in general accordance with the Guide for the Care and Use of Laboratory

Animals: Eighth Edition in our AAALAC-accredited laboratory animal facility. The animal care and use protocol was reviewed and

approved by the IACUC at Pharmacology Discovery Services Taiwan, Ltd.

Animal dosing design - in vivo PK, non-fasted animals
Vehicle Dose Schedule Route

Dose

Mice (Male ICR)mL/kg mg/kg

DMSO/ Solutol� HS15/ PBS (5/10/85, v/v/v) Bolus IV 5 20 24a + 3b
aPlasma with 3 mice per time point; bNormal (untreated) blank control for drug free plasma.

MANIO formulation
MANIO was dissolved in dimethyl sulfoxide (DMSO)/ Solutol� HS15/ PBS (5/10/85, v/v/v) at 4 mg/mL for IV injection. The dosing

volume was 5 mL/kg for IV.
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Plasma sample collection from mice
Blood aliquots (300-400 mL) were collected via cardiac puncture in tubes coated with lithium heparin, mixed gently, then kept on ice

and centrifuged at 2,5003 g for 15 minutes at 4�C, within 1 h of collection. The plasma was then harvested and kept frozen at�70�C
until further processing.

Quantitative bioanalysis (plasma)
The plasma samples were processed using acetonitrile (ACN) precipitation and analyzed by LC-MS/MS. A plasma calibration curve

was generated. Aliquots of drug-free plasma were spiked with the test substance at the specified concentration levels. The spiked

plasma samples were processed together with the unknown plasma samples using the same procedure. The processed plasma

samples were stored at �70�C until receiving LC-MS/MS analysis, at which time peak areas were recorded, and the concentrations

of the test substance in the unknown plasma samples were determined using the respective calibration curve. The reportable linear

range of the assay was determined, along with the lower limit of quantitation (LLOQ).

Pharmacokinetics
Plots of plasma concentration of MANIO versus time were constructed. The fundamental pharmacokinetic parameters of each com-

pound after IV (t1/2, C0, AUClast, AUCInf, AUCExtr, MRT, Vss, and CL) was obtained from the non-compartmental analysis (NCA) of

the plasma data using WinNonlin. Plots of plasma concentrations of compounds versus dose were constructed.

Modeling
The starting structure for the modeling was the crystal of wtp53 DBD tetramer bound to a DNA target (2AC0) (Kitayner et al., 2006), as

described in a previous work (#94) (Gomes et al., 2020). The R248W mutation was performed using Chimera swapaa tool and then

geometry optimized with the Amber18/ parm99SB (#100)(Hornak et al., 2006).

Molecular docking
Molecular docking of MANIO was performed using the AutoDock 4.2 suite of programs with the Lamarckian genetic algorithm (LGA)

(#99) (Morris et al., 1998). A grid box was centered on residue 280 of chain A. The population was 300, the maximum number of gen-

erations was 27,000 and the maximum number of energy evaluations was 2,500,000.

Molecular dynamics (MD) simulations
MD simulations were performed using the Amber 18molecular dynamics programwith the parm99SB (Hornak et al., 2006) andGAFF

force fields (Wang et al., 2004) for the complexes of DNA:wtp53 and DNA:R248Wp53 with the ligand MANIO. The structures were

placed within an octahedral box of TIP3P waters (the distance between the protein surface and the box was set to 10Å) and counter

ions were added tomake the entire system neutral. The systems were subjected to two initial energyminimizations (with the steepest

descent and conjugate gradient algorithms) and to 500 ps of equilibration in a NVT ensemble using Langevin dynamics with small

restraints on the protein (10 kcal/mol) to heat the system from 0 to 300 K. Production simulations were carried out at 300 K in the

NPT ensemble using Langevin dynamics with a collision frequency of 1.0 ps�1. Constant pressure periodic boundary conditions

were imposed with an average pressure of 1 atm. Isotropic position scaling was used to maintain pressure with a relaxation time

of 2 ps. The time stepwas set to 2 fs. SHAKE constraints were applied to all bonds involving hydrogen atoms (Miyamoto and Kollman,

1992). The particle mesh Ewald (PME) method (Darden et al., 1993)was used to calculate electrostatic interactions with a cut off dis-

tance of 10 Å. Two replicas of 50 ns simulations with different initial velocities were performed. The total combined time of the sim-

ulations was 200 ns. Cluster analysis was conducted with the DBScan clustering algorithm, with a minimum of 25 points and 1.5 Å as

cut-off distance to form a cluster representation. The trajectories of the corresponding atoms were extracted and analyzed for the

100 ns using 6666 frames for each structure.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was calculated for each dataset based on at least three independent experiments. Data were analyzed using

GraphPad Prism software v7.0 (San Diego, CA, USA) and are presented as means ± SEM. Appropriate statistical tests were applied

to each dataset ; p < 0.05 was considered statistically significant.
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