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Abstract 

Invasive aspergillosis (IA) is a major threat for the outcome of allogeneic stem-cell 

transplantation (allo-SCT). Despite presenting similar degrees of immunosuppression, 

not all individuals at-risk ultimately develop infection. Therefore, the traditional view of 

neutropenia as a key risk factor for aspergillosis needs to be accommodated within new 

conceptual advances on host immunity and its relationship to infection. Polymorphisms 

in innate immune genes, such as those encoding TLRs, cytokines and cytokine 

receptors, have recently been associated with susceptibility to IA in allo-SCT recipients. 

This suggests that understanding host–pathogen interactions at the level of host genetic 

susceptibility will allow the formulation of new targeted and patient-tailored antifungal 

therapeutics, including improved donor screening. 
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Introduction 

Invasive infections by Aspergillus moulds are associated with high rates of morbidity 

and mortality, particularly among patients with hematological malignancies, prolonged 

neutropenia, treated with corticosteroids, or undergoing stem-cell or solid organ 

transplantation [1]. Although immunocompetent and nonatopic subjects are fairly 

resistant to Aspergillus infections, A. fumigatus is associated with a wide spectrum of 

diseases in humans, ranging from allergic syndromes to more severe forms of invasive 

disease [2]. These considerations imply that only certain host circumstances render the 

fungus pathogenic or innocuous to the host [3]. As a matter of fact, the exposure to 

Aspergillus is ubiquitous, and there is no evidence that isolates causing invasive 

infection are genetically or phenotypically distinct [4]. 

The most important risk factor for invasive aspergillosis (IA) has historically 

been neutropenia. However, it is not clear why some patients with comparable levels of 

apparent immunocompromise develop disease and others do not. Additionally, stem-cell 

transplant recipients have reduced rates of neutropenia-related infections and increased 

frequency of late-onset infections, concomitant with the occurrence of graft-versus-host 

disease (GVHD) [5)]. These findings, together with the incidence of aspergillosis in 

non-neutropenic patients [2, 6], attest to the importance of specific defects in both 

innate and adaptive immune mechanisms to the pathogenesis of the infectious process 

[7-9]. 

Since allogeneic stem-cell transplantation (allo-SCT) dramatically impairs 

various layers of the immune system, subtle defects in the immune response could 

become clinically significant. On the contrary, in healthy individuals, the redundancy of 

the different immune pathways could easily camouflage such immune deficiencies. In 

this regard, over the last few years, significant advances into the genetic basis of IA 

occurring in the allo-SCT setting have been made (Table 1), being now clear that host 
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genetic variants determine disparate immune responses to the fungus, ultimately 

contributing to different degrees of susceptibility to infection [10]. 

 

The multi-faceted host immune response to Aspergillus fumigatus 

Although fungi are not mere passive bystanders in the infectious process, compelling 

evidence points to the mammalian immune system as the most important determinant of 

the host-fungus interaction. Host defense mechanisms against Aspergillus are numerous 

and range from relatively primitive and constitutively expressed non-specific defenses 

to sophisticated adaptive mechanisms induced specifically during infection [11]. These 

two arms of the immune system are linked through a variety of cross-regulatory 

pathways, the integration of which provides for the host the complex arsenal of effector 

mechanisms for defense. 

Among the multiple effector mechanisms of the innate immune system, resident 

alveolar macrophages have long been recognized as the first line of defense against 

Aspergillus, preventing hyphal germination and the consequent activation of 

inflammatory responses against the fungus [12].  In contrast, polymorphonuclear cells 

(PMNs) are the predominant immune cells in the acute stage of infection. PMNs may 

act as “double-edged swords”, as they are essential for pathogen eradication, but a 

disproportionate release of oxidants and proteases may also be responsible for injury to 

the lung [13]. This implies that tight regulatory mechanisms are required to balance 

protection and immunopathology for efficient control of the fungus. 

The innate immune response to fungi is based on a restricted number of 

receptors, the pattern recognition receptors (PRRs), which play important roles in 

manipulating the immune response against the fungus, improving or decreasing the 

intensity of the inflammatory reactions often intended to sterilize the host to avoid 

infection. Among the signaling PRRs, the Toll-like receptor (TLR) family is 
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undoubtedly involved in cell activation upon contact with pathogens [14]; specifically, 

TLR2, TLR4 and TLR9 have been implicated in host defense against A. fumigatus [13, 

15-18]. It is of interest that signaling through TLR2 and TLR4 in PMNs is associated 

with the induction of distinct activation programs, eventually culminating in the 

occurrence of different patterns of fungal clearance and inflammatory pathology [13, 

15]. On the other hand, A. fumigatus is also capable of subverting the host’s 

inflammatory response through the attenuation of TLR2- and TLR4-mediated 

proinflammatory responses, therefore leading to an immunosuppressive effect 

eventually facilitating invasiveness [19]. 

Although the signaling pathways elicited by TLRs are known to be essential in 

controlling fungal infection [15], recent studies have also highlighted the pivotal role of 

C-type lectin receptors, in particular dectin-1, in the immune response to A. fumigatus 

[20]. In fact, TLRs and dectin-1, alone or synergistically, can modulate the induction of 

Th1- and Th17-polarizing cytokines in response to the fungus [21], demonstrating that 

the involvement of innate immune receptors other than TLRs may also be required to 

promote adequate immune responses against A. fumigatus. 

 

TLR4 deficiency triggers paradoxical effects in invasive aspergillosis 

There is now undeniable evidence that genetic variants within recognition molecules 

involved in innate immunity may account, in part, for the inherited differences in human 

susceptibility to infection [22]. Given the broad effect of TLRs on immunity [14], their 

function in human disease has been investigated largely by comparing the incidence of 

disease among individuals with different polymorphisms in genes that participate in 

TLR signaling. Accordingly, growing amounts of data suggest that the ability of certain 

individuals to properly respond to TLR ligands may be impaired by polymorphisms in 

TLR genes, resulting in an altered susceptibility to, or course of, infectious or 
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inflammatory disease [23]. Most studies so far have focused on the highly polymorphic 

TLR4 gene, in which two co-segregated missense polymorphisms – D299G and T399I – 

have been described to compromise the extracellular ligand-binding domain of TLR4 

[24]. These variants have been linked with blunted airway [25] and systemic 

inflammatory responses [26] to inhaled lipopolysaccharide (LPS) in adults and 

attenuated LPS-induced responses in primary airway epithelial cells [25]. Interestingly, 

the D299G substitution was found to have a greater functional impact compared with 

the T399I genotype [25]. 

One of the first studies investigating the functional consequences of TLR4 

polymorphisms in aspergillosis described an increased frequency of the chronic form of 

pulmonary aspergillosis, chronic cavitary pulmonary aspergillosis (CCPA), among 

D299G carriers [27]. In CCPA patients, the fungus is able to grow in pre-formed lung 

cavities, therefore escaping immune surveillance. Considering that subjects harboring 

the D299G polymorphism have an additional defect in TLR4 function, the increased 

susceptibility observed is likely due to an extensive impairment in fungal recognition. 

Accordingly, Tlr4-deficient mice were also found to be highly susceptible to 

aspergillosis, in most part due to the inability to effectively clear the fungus [13]. 

In the stem-cell transplantation setting, the D299G polymorphism in TLR4 was 

also found to increase susceptibility to IA in allo-SCT recipients from unrelated donors 

[28]. The fact that a previous study failed to associate the same donor polymorphism 

with IA in allo-SCT patients [29] further stresses that the contribution of the D299G 

polymorphism may depend on the type of transplant and associated clinical variables. In 

this regard, we have recently described an association between donor D299G and 

colonization by A. fumigatus, but not invasive disease, in a cohort of T-cell-depleted 

transplant recipients from related donors [30]. Therefore, fungal colonization may not 

predict susceptibility to infection in the presence of D299G, at least in this particular 
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transplant setting. The contribution of this polymorphism to colonization by A. 

fumigatus could be explained by the fact that an abnormal TLR4 extracellular domain 

could be hampering its function by disrupting microbial recognition, eventually leading 

to fungal escape from immune surveillance (Fig. 1). However, TLR4 polymorphisms 

have also been shown to display a protective effect from hyper-inflammatory diseases, 

including atherosclerosis and related conditions [31]. Therefore, the failure to recognize 

the fungus may be compensated by the lack of an exuberant inflammatory response to it 

which may ultimately be harmful to the host. In this regard, we have found that a hyper-

inflammatory state, more than the fungus itself, may contribute to susceptibility to 

aspergillosis and other fungal infections [32]. Thus, by limiting the inflammatory 

response to the fungus, the D299G polymorphism could contribute to resistance to 

aspergillosis, despite evidence of fungal growth. Interestingly, the D299G 

polymorphism was recently shown to have a unique distribution with high prevalence in 

Africa and low prevalence in Europe, with the authors arguing that the benefit from 

reduced inflammation during malaria in Africa might have been counter-selected due to 

lack of inflammation in response to bacterial infections [33]. 

Although TLR4 has been representing the cornerstone of genetic variability to 

aspergillosis in the last few years, polymorphisms in other TLRs have also been linked 

with susceptibility to Aspergillus. In particular, a common polymorphism in the TLR9 

promoter (T-1237C) has been shown to predispose to the allergic form of pulmonary 

aspergillosis, allergic bronchopulmonary aspergillosis (ABPA) [27]. It is worth 

mentioning that we found this polymorphism to lead to an increase in TLR9 gene 

expression in human mononuclear cells that could be further sustained upon TLR9 

engagement, presumably resulting in a gain-of-function of the receptor (Rodrigues F, 

unpublished data). This observation is consistent with a role for TLR9 in response to 

allergy since Tlr9-deficient mice have been shown to be more resistant to induced 
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allergenic stimuli [34]. In addition, PMNs from these mice had an increased capacity to 

kill conidia and damage Aspergillus hyphae [13], therefore arguing for a detrimental 

role of this TLR9 polymorphism and consequent enhancement of TLR9 function in 

allergic aspergillosis. 

 

IL-23 and IL-17 have a largely detrimental role in aspergillosis 

Despite TLRs being proved to be crucial for detecting infection and activating the 

innate and adaptive immune systems, sustained TLR stimulation can result in chronic 

inflammation and is also associated with the development of certain autoimmune 

diseases [35]. In the last two decades, the immunopathogenesis of aspergillosis and 

associated inflammatory diseases has been explained primarily in terms of Th1/Th2 

balance [11, 36]. Until recently, CD4
+
 Th1 cells were considered responsible for the 

development of inflammatory responses to Aspergillus that were mediated by IL-12p70, 

the key cytokine driving Th1-cell differentiation. The discovery of the IL-12 cytokine-

family member IL-23 has led to a re-evaluation of this conceptual framework [37]. IL-

23, although not directly involved in Th17 differentiation, plays an important role in 

maintaining Th17 effector function [38]. Several experimental studies and clinical 

investigations confirmed that IL-23-driven Th17 cells, rather than the Th1-cell subset, 

mediate the inflammatory responses of autoimmune or infectious origin [32, 39]. In 

addition, both IL-23 and the Th17 pathway correlate with disease severity and 

immunopathology in diverse infections [40-41], suggesting that IL-12 and IL-23 have 

distinct roles in promoting antimicrobial immune responses and diseases in vivo. 

We have recently demonstrated that IL-17 has a largely detrimental role in 

aspergillosis in non-immunosuppressed mice, since it hampered neutrophil-mediated 

killing of A. fumigatus and the in vivo clearance of the fungus [41]. In addition, 

blockade of IL-23 and IL-17 greatly increased antifungal resistance, as judged by the 
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decreased fungal growth in the relevant target organs and the ameliorated signs of 

inflammation, both clinically and at the tissue level [41]. Thus, despite the important 

role in regulating PMN homeostasis and recruitment [42], IL- 23 and IL-17, by 

subverting the tolerogenic program of PMNs, may promote pathogen growth and 

infection as a result of the induced inflammatory pathology. In this regard, in a mouse 

model of chronic granulomatous disease, we have recently found that down-regulation 

of IL-23 promoted by exogenous administration of pentraxin 3 (PTX3) restored 

antifungal resistance and restrained the inflammatory response to the fungus through the 

limited expansion of IL-17-producing γδ T-cells and the emergence of Th1/Treg 

responses with minimum pathology [43]. Altogether, these results may serve to 

accommodate the paradoxical association of chronic inflammatory responses with 

intractable forms of fungal infection, where fungal persistence occurs in the face of an 

ongoing inflammation. 

The ability of IL-17 to promote fungal germination further stresses its potential 

negative role in the immune responses against A. fumigatus [44]. Therefore, the function 

of the Th17 pathway may go beyond its ability to promote inflammation and subvert 

antimicrobial immunity by also having a direct action on fungal morphology and 

virulence. This may translate in concomitant Th2 cell activation, known to be strictly 

dependent on high levels of hyphal growth [45], and further prevent Th1 functioning. 

Thus, the Th17 pathway may contribute to the pathogenesis of fungal infections, 

occurring in a fungus-autonomous fashion at sites of infection. 

 

Genetic impairment of IL-23 signaling protects from invasive aspergillosis 

Polymorphisms in cytokine genes can influence immune responses and inflammation, 

thereby affecting susceptibility to aspergillosis in allo-SCT recipients [46]. However, 

the role of polymorphisms in genes from the IL-23/Th17 inflammatory pathway in 
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aspergillosis has only recently been addressed [47]. It has already been shown that the 

R381Q variant in IL23R confers protection against a number of immune-mediated 

diseases, such as inflammatory bowel disease [48] and psoriasis [49], but also against 

GVHD in recipients of hematopoietic cells from HLA-identical donors [50]. Although 

the genetic findings have been thoroughly replicated, much less is known about the 

functional consequences of this variant. A recent study demonstrated that the protective 

effects displayed by the R381Q polymorphism in IL23R were due to a deficient 

activation of IL-23-driven Th17 responses [51]. In vitro committed effector Th17 cells 

derived from subjects harbouring the R381Q protective allele stimulated with IL-23 

were shown to have impaired production of IL-17A compared to wild-type individuals 

[51]. Interestingly, IL-23 stimulation of highly purified naïve T-cells did not result in 

any difference whatsoever between R381Q genotypes [51], suggesting that the 

consequences of the polymorphism may be exclusively reflected in the function of 

already differentiated Th17 cells. 

In T-cell-depleted allo-SCT recipients, we found that donor R381Q was 

associated with strong protection from IA and patient R381Q with improved overall 

survival [47] (Fig. 2). Strikingly, none of the patients carrying the R381Q 

polymorphism enrolled in the study developed aspergillosis. These findings are 

consistent with the protective effects of IL-23 signaling attenuation in experimental 

aspergillosis [41]. However, a set of polymorphisms in the IL17A and IL17F genes were 

not associated with susceptibility to IA in allo-SCT recipients [47], a finding suggesting 

that further studies are needed to define cellular and molecular mechanisms by which 

protection from aspergillosis is conferred by the disruption of the IL-23/Th17 axis. 

 The fact that donor R381Q also increased the risk of cytomegalovirus infection 

[47], while being consistent with the enhancing role of IL-23 of antiviral immunity [52], 

indicates that Aspergillus more than viral infection may impact on survival, at least in 
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the T-cell-depleted transplantation setting. Although the R381Q polymorphism could 

arguably influence survival by modifying the incidence of disease relapse or GVHD, no 

beneficial effects on relapse or GVHD were found at all [47]. 

 

Immunogenetics: from bench to bedside 

Although the dissection of complex genetic traits modulating susceptibility to 

aspergillosis is complex, the contribution of host genetics may hold the key to elucidate 

new risk factors for these severe, often fatal diseases. In this sense, new conceptual 

advances on the knowledge of host immunity need to be accommodated also from an 

immunogenetic point of view. 

It is interesting that the genetic bases for susceptibility to human disease may 

also be evaluated by the screening of inbred murine strains. Recently, this approach was 

performed using an immunocompromised mice model of IA [53]. Through a haplotype-

based computational genetic analysis of survival data, the gene encoding plasminogen 

(PLG) was recently identified as a suitable candidate for susceptibility to Aspergillus. 

Consequently, a functional polymorphism in human PLG was reported to affect the risk 

of developing IA in allo-SCT recipients [53]. Besides shedding light into the role of the 

fibrinolytic system in the pathogenesis of IA, this approach identified a novel, 

biologically plausible candidate gene, validating its future use in the identification of 

less obvious disease-related genes. 

Considering the key role played by many genetic polymorphisms at the host–

fungus interface, further large-scale translational and clinical studies are needed to 

corroborate the data obtained from human cohorts. The modulation of host immune 

responses has been regarded as a potential therapeutic avenue with promising impact 

also on the treatment of fungal infections. We have recently reported that intranasal 

administration of a small interference RNA (siRNA) targeting the inflammatory 
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PI3K/Akt/mTOR pathway rendered mice protection from experimental aspergillosis 

through attenuation of the inflammatory pathology [54]. The promising application of 

siRNA therapeutics, together with the awareness of the immunogenetic profile of each 

individual at-risk, including those subjected to allo-SCT, could prove useful to the 

design of fungal vaccines capable of targeting the appropriate signaling pathways and 

the development of therapeutics that target inflammation in aspergillosis. 

In conclusion, understanding host–pathogen interactions at the level of host 

genetic susceptibility, together with the molecular and cellular bases affected, will allow 

the identification of potential therapeutic targets and the design of prophylactic 

strategies exerting control over the outcome of immune pathways. The genetic 

screening of at-risk patients may ultimately be used to individualize treatments through 

the formulation of new targeted and patient-tailored antifungal therapeutics, which are 

likely to improve the management and outcome of aspergillosis, particularly in the 

stem-cell transplantation setting. 
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Figure legends 

Fig.1 - The D299G polymorphism of TLR4 triggers paradoxical effects in invasive 

aspergillosis following stem-cell transplantation. 

 

Fig.2 – The genetic impairment of IL-23 signaling promoted by the R381Q 

polymorphism in IL23R protects from invasive aspergillosis. 
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Table 1. Human genetic association studies evaluating polymorphisms in immune genes and susceptibility to invasive 

aspergillosis in allogeneic stem-cell transplant recipients. 

Reference Gene Polymorphism/Haplotypes  Relevant findings 

Bochud et al. TLR4 
D299G and T399I 

(S4 haplotype) 
 

An association between donor S4 haplotype and risk of IA was observed, especially 
if combined with CMV positivity (n=103 IA cases) 

Carvalho et al. TLR4 D299G *  
Donor D299G was associated with fungal colonization (n=58), while susceptibility 
to IA was instead decreased among pre-colonized patients (n=34) 

Carvalho et al. IL23R R381Q  Donor R381Q displayed a protective effect from IA (n=25 IA cases) 

Granell et al. MBL2 O/O or LXA/O †  
Donor MBL-low genotype (38% vs. 12%) was associated with a higher probability 
of IA (n=106 donor-patients sibling pairs) 

Granell et al. MASP2 D105G  
Recipient D105G (67% vs. 14%) was associated with a higher probability of IA 
(n=106 donor-patient sibling pairs) 

Kesh et al. 
TLR1 and 

TLR6 
R80T, N248S and S249P  

TLR1 R80T or combination of TLR1 N248S and TLR6 S249P from the recipient 
were associated with IA (n=22 IA cases) 

Mezger et al. CXCL10 
C+11101T, C+1642G and 

A–1101G 
 Donor CXCL10 polymorphisms were associated with IA (n=81 IA cases) 

Seo et al. IL10 -1082A/-819C/-592C  
Recipient ACC haplotype had a protective role from IA (n=105 patients; 9.9% IA 
cases) 

Zaas et al. PLG D472N  
Risk of IA at day >40 after transplant was 5.6-fold higher in N/N vs. D/D recipients 
(n=83 IA cases) 

 

IA – invasive aspergillosis; CMV – cytomegalovirus; MBL – mannose-binding lectin. 

* D299G and T399I were always co-segregated. 

† O/O and LXA/O are MBL-low haplotypes. LX represents an MBL promoter haplotype. Variants D, B and C are collectively named O, while A indicates the wild-type. 
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