60 research outputs found

    Management of systemic sclerosis: British Society for Rheumatology guideline scope

    Get PDF
    This guideline will provide a practical roadmap for management of SSc that builds upon the previous treatment guideline to incorporate advances in evidence-based treatment and increased knowledge about assessment, classification and management. General approaches to management as well as treatment of specific complications will be covered, including lung, cardiac, renal and gastrointestinal tract disease, as well as RP, digital vasculopathy, skin manifestations, calcinosis and impact on quality of life. It will include guidance related to emerging approved therapies for interstitial lung disease and account for National Health Service England prescribing policies and national guidance relevant to SSc. The guideline will be developed using the methods and processes outlined in Creating Clinical Guidelines: Our Protocol. This development process to produce guidance, advice and recommendations for practice has National Institute for Health and Care Excellence accreditation

    Causal Modeling Using Network Ensemble Simulations of Genetic and Gene Expression Data Predicts Genes Involved in Rheumatoid Arthritis

    Get PDF
    Tumor necrosis factor α (TNF-α) is a key regulator of inflammation and rheumatoid arthritis (RA). TNF-α blocker therapies can be very effective for a substantial number of patients, but fail to work in one third of patients who show no or minimal response. It is therefore necessary to discover new molecular intervention points involved in TNF-α blocker treatment of rheumatoid arthritis patients. We describe a data analysis strategy for predicting gene expression measures that are critical for rheumatoid arthritis using a combination of comprehensive genotyping, whole blood gene expression profiles and the component clinical measures of the arthritis Disease Activity Score 28 (DAS28) score. Two separate network ensembles, each comprised of 1024 networks, were built from molecular measures from subjects before and 14 weeks after treatment with TNF-α blocker. The network ensemble built from pre-treated data captures TNF-α dependent mechanistic information, while the ensemble built from data collected under TNF-α blocker treatment captures TNF-α independent mechanisms. In silico simulations of targeted, personalized perturbations of gene expression measures from both network ensembles identify transcripts in three broad categories. Firstly, 22 transcripts are identified to have new roles in modulating the DAS28 score; secondly, there are 6 transcripts that could be alternative targets to TNF-α blocker therapies, including CD86 - a component of the signaling axis targeted by Abatacept (CTLA4-Ig), and finally, 59 transcripts that are predicted to modulate the count of tender or swollen joints but not sufficiently enough to have a significant impact on DAS28

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe

    Compositional Heterogeneity and Patterns of Molecular Evolution in the Drosophila Genome

    No full text
    The rates and patterns of molecular evolution in many eukaryotic organisms have been shown to be influenced by the compartmentalization of their genomes into fractions of distinct base composition and mutational properties. We have examined the Drosophila genome to explore relationships between the nucleotide content of large chromosomal segments and the base composition and rate of evolution of genes within those segments. Direct determination of the G + C contents of yeast artificial chromosome clones containing inserts of Drosophila melanogaster DNA ranging from 140-340 kb revealed significant heterogeneity in base composition. The G + C content of the large segments studied ranged from 36.9% G + C for a clone containing the hunchback locus in polytene region 85, to 50.9% G + C for a clone that includes the rosy region in polytene region 87. Unlike other organisms, however, there was no significant correlation between the base composition of large chromosomal regions and the base composition at fourfold degenerate nucleotide sites of genes encompassed within those regions. Despite the situation seen in mammals, there was also no significant association between base composition and rate of nucleotide substitution. These results suggest that nucleotide sequence evolution in Drosophila differs from that of many vertebrates and does not reflect distinct mutational biases, as a function of base composition, in different genomic regions. Significant negative correlations between codon-usage bias and rates of synonymous site divergence, however, provide strong support for an argument that selection among alternative codons may be a major contributor to variability in evolutionary rates within Drosophila genomes

    Compositional Heterogeneity and Patterns of Molecular Evolution in the Drosophila Genome

    No full text
    The rates and patterns of molecular evolution in many eukaryotic organisms have been shown to be influenced by the compartmentalization of their genomes into fractions of distinct base composition and mutational properties. We have examined the Drosophila genome to explore relationships between the nucleotide content of large chromosomal segments and the base composition and rate of evolution of genes within those segments. Direct determination of the G + C contents of yeast artificial chromosome clones containing inserts of Drosophila melanogaster DNA ranging from 140-340 kb revealed significant heterogeneity in base composition. The G + C content of the large segments studied ranged from 36.9% G + C for a clone containing the hunchback locus in polytene region 85, to 50.9% G + C for a clone that includes the rosy region in polytene region 87. Unlike other organisms, however, there was no significant correlation between the base composition of large chromosomal regions and the base composition at fourfold degenerate nucleotide sites of genes encompassed within those regions. Despite the situation seen in mammals, there was also no significant association between base composition and rate of nucleotide substitution. These results suggest that nucleotide sequence evolution in Drosophila differs from that of many vertebrates and does not reflect distinct mutational biases, as a function of base composition, in different genomic regions. Significant negative correlations between codon-usage bias and rates of synonymous site divergence, however, provide strong support for an argument that selection among alternative codons may be a major contributor to variability in evolutionary rates within Drosophila genomes

    Whole Genome Sequencing Reveals a Chromosome 9p Deletion Causing DOCK8 Deficiency in an Adult Diagnosed with Hyper IgE Syndrome Who Developed Progressive Multifocal Leukoencephalopathy

    Full text link
    PURPOSE A 30 year-old man with a history of recurrent skin infections as well as elevated serum IgE and eosinophils developed neurological symptoms and had T2-hyperintense lesions observed in cerebral MRI. The immune symptoms were attributed to Hyper IgE syndrome (HIES) and the neurological symptoms with presence of JC virus in cerebrospinal fluid were diagnosed as Progressive Multifocal Leukoencephalopathy (PML). The patient was negative for STAT3 mutations. To determine if other mutations explain HIES and/or PML in this subject, his DNA was analyzed by whole genome sequencing. METHODS Whole genome sequencing was completed to 30X coverage, and whole genome SNP typing was used to complement these data. The methods revealed single nucleotide variants, structural variants, and copy number variants across the genome. Genome-wide data were analyzed for homozygous or compound heterozygous null mutations for all protein coding genes. Mutations were confirmed by PCR and/or Sanger sequencing. RESULTS Whole genome analysis revealed deletions near the telomere of both copies of chromosome 9p. Several genes, including DOCK8, were impacted by the deletions but it was unclear whether each chromosome had identical or distinct deletions. PCR across the impacted region combined with Sanger sequencing of selected fragments confirmed a homozygous deletion from position 10,211 to 586,751. CONCLUSION While several genes are impacted by the deletion, DOCK8 deficiency is the most probable cause of HIES in this patient. DOCK8 deficiency may have also predisposed the patient to develop PML

    Rescue of gene-expression changes in an induced mouse model of spinal muscular atrophy by an antisense oligonucleotide that promotes inclusion of SMN2 exon 7

    Get PDF
    Spinal muscular atrophy (SMA) is a neuromuscular disease caused by disruption of the survival motor neuron 1 (SMN1) gene, partly compensated for by the paralogous gene SMN2. Exon 7 inclusion is critical for full-length SMN protein production and occurs at a much lower frequency for SMN2 than for SMN1. Antisense oligonucleotide (ASO)-mediated blockade of intron 7 was previously shown to promote inclusion of SMN2 exon 7 in SMA mouse models and mediate phenotypic rescue. However, downstream molecular consequences of this ASO therapy have not been defined. Here we characterize the gene-expression changes that occur in an induced model of SMA and show substantial rescue of those changes in central nervous system tissue upon intracerebroventricular administration of an ASO that promotes inclusion of exon 7, with earlier administration promoting greater rescue. This study offers a robust reference set of preclinical pharmacodynamic gene expression effects for comparison of other investigational therapies for SMA
    • …
    corecore