692 research outputs found

    Do Staphylococcus epidermidis genetic clusters predict isolation sources?

    Get PDF
    Staphylococcus epidermidis is a ubiquitous colonizer of human skin and a common cause of medical device-associated infections. The extent to which the population genetic structure of S. epidermidis distinguishes commensal from pathogenic isolates is unclear. Previously, Bayesian clustering of 437 multilocus sequence types (STs) in the international database revealed a population structure of six genetic clusters (GCs) that may reflect the species' ecology. Here, we first verified the presence of six GCs, including two (GC3 and GC5) with significant admixture, in an updated database of 578 STs. Next, a single nucleotide polymorphism (SNP) assay was developed that accurately assigned 545 (94%) of 578 STs to GCs. Finally, the hypothesis that GCs could distinguish isolation sources was tested by SNP typing and GC assignment of 154 isolates from hospital patients with bacteremia and those with blood culture contaminants and from nonhospital carriage. GC5 was isolated almost exclusively from hospital sources. GC1 and GC6 were isolated from all sources but were overrepresented in isolates from nonhospital and infection sources, respectively. GC2, GC3, and GC4 were relatively rare in this collection. No association was detected between fdh-positive isolates (GC2 and GC4) and nonhospital sources. Using a machine learning algorithm, GCs predicted hospital and nonhospital sources with 80% accuracy and predicted infection and contaminant sources with 45% accuracy, which was comparable to the results seen with a combination of five genetic markers (icaA, IS256, sesD [bhp], mecA, and arginine catabolic mobile element [ACME]). Thus, analysis of population structure with subgenomic data shows the distinction of hospital and nonhospital sources and the near-inseparability of sources within a hospital

    Structural Modification in Carbon Nanotubes by Boron Incorporation

    Get PDF
    We have synthesized boron-incorporated carbon nanotubes (CNTs) by decomposition of ferrocene and xylene in a thermal chemical vapor deposition set up using boric acid as the boron source. Scanning and transmission electron microscopy studies of the synthesized CNT samples showed that there was deterioration in crystallinity and improvement in alignment of the CNTs as the boron content in precursor solution increased from 0% to 15%. Raman analysis of these samples showed a shift of ~7 cm−1in wave number to higher side and broadening of the G band with increasing boron concentration along with an increase in intensity of the G band. Furthermore, there was an increase in the intensity of the D band along with a decrease in its wave number position with increase in boron content. We speculate that these structural modifications in the morphology and microstructure of CNTs might be due to the charge transfer from boron to the graphite matrix, resulting in shortening of the carbon–carbon bonds

    Stringy Stability of Charged Dilaton Black Holes with Flat Event Horizon

    Get PDF
    Electrically charged black holes with flat event horizon in anti-de Sitter space have received much attention due to various applications in Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the behavior of quark-gluon plasma to superconductor. Crucial to the physics on the dual field theory is the fact that when embedded in string theory, black holes in the bulk may become vulnerable to instability caused by brane pair-production. Since dilaton arises naturally in the context of string theory, we study the effect of coupling dilaton to Maxwell field on the stability of flat charged AdS black holes. In particular, we study the stability of Gao-Zhang black holes, which are locally asymptotically anti-de Sitter. We find that for dilaton coupling parameter α\alpha > 1, flat black holes are stable against brane pair production, however for 0 < α\alpha < 1, the black holes eventually become unstable as the amount of electrical charges is increased. Such instability however, behaves somewhat differently from that of flat Reissner-Nordstr\"om black holes. In addition, we prove that the Seiberg-Witten action of charged dilaton AdS black hole of Gao-Zhang type with flat event horizon (at least in 5-dimension) is always logarithmically divergent at infinity for finite values of α\alpha, and is finite and positive in the case α\alpha tends to infinity . We also comment on the robustness of our result for other charged dilaton black holes that are not of Gao-Zhang type.Comment: Fixed some confusions regarding whether part of the discussions concern electrically charged hole or magnetically charged one. No changes to the result

    Cosmology of a Scalar Field Coupled to Matter and an Isotropy-Violating Maxwell Field

    Full text link
    Motivated by the couplings of the dilaton in four-dimensional effective actions, we investigate the cosmological consequences of a scalar field coupled both to matter and a Maxwell-type vector field. The vector field has a background isotropy-violating component. New anisotropic scaling solutions which can be responsible for the matter and dark energy dominated epochs are identified and explored. For a large parameter region the universe expands almost isotropically. Using that the CMB quadrupole is extremely sensitive to shear, we constrain the ratio of the matter coupling to the vector coupling to be less than 10^(-5). Moreover, we identify a large parameter region, corresponding to a strong vector coupling regime, yielding exciting and viable cosmologies close to the LCDM limit.Comment: Refs. added, some clarifications. Published in JHEP10(2012)06

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    Evidence for a novel Kit adhesion domain mediating human mast cell adhesion to structural airway cells

    Get PDF
    Background: Human lung mast cells (HLMCs) infiltrate the airway epithelium and airway smooth muscle (ASM) in asthmatic airways. The mechanism of HLMC adhesion to both cell types is only partly defined, and adhesion is not inhibited by function-blocking anti-Kit and anti-stem cell factor (SCF) antibodies. Our aim was to identify adhesion molecules expressed by human mast cells that mediate adhesion to human ASM cells (HASMCs) and human airway epithelial cells. Methods: We used phage-display to isolate single chain Fv (scFv) antibodies with adhesion-blocking properties from rabbits immunised with HLMC and HMC-1 membrane proteins. Results: Post-immune rabbit serum labelled HLMCs in flow cytometry and inhibited their adhesion to human BEAS-2B epithelial cells. Mast cell-specific scFvs were identified which labelled mast cells but not Jurkat cells by flow cytometry. Of these, one scFv (A1) consistently inhibited mast cell adhesion to HASMCs and BEAS-2B epithelial cells by about 30 %. A1 immunoprecipitated Kit (CD117) from HMC-1 lysates and bound to a human Kit-expressing mouse mast cell line, but did not interfere with SCF-dependent Kit signalling. Conclusion: Kit contributes to human mast cell adhesion to human airway epithelial cells and HASMCs, but may utilise a previously unidentified adhesion domain that lies outside the SCF binding site. Targeting this adhesion pathway might offer a novel approach for the inhibition of mast cell interactions with structural airway cells, without detrimental effects on Kit signalling in other tissues

    Lectin-like bacteriocins from pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor

    Get PDF
    Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins

    Evaluation of a new Rapid Antimicrobial Susceptibility system for Gram-negative and Gram-positive bloodstream infections: speed and accuracy of Alfred 60AST.

    Get PDF
    BACKGROUND: Blood stream infections (BSIs) are a major cause of morbidity and mortality. The time from taking blood cultures to obtain results of antibiotic sensitivity can be up to five days which impacts patient care. The Alfred 60 AST™ can reduce laboratory time from positive culture bottle to susceptibility results from 16 to 25 h to 5-6 h, transforming patient care. To evaluate the diagnostic accuracy of a rapid antimicrobial susceptibility system, the Alfred 60 AST™, in clinical isolates from patients with BSIs and confirm time to results. 301 Gram-negative and 86 Gram-positive isolates were analysed directly from positive blood culture bottles following Gram staining. Antimicrobial susceptibility results and time-to-results obtained by rapid Alfred 60 AST system and BD Phoenix were compared . RESULTS: A total of 2196 antimicrobial susceptibility test results (AST) were performed: 1863 Gram-negative and 333 Gram-positive. AST categorical agreement (CA) for Alfred 60 AST™ was 95% (1772/1863) for Gram-negative and 89% (295/333) for Gram-positive isolates. Gram-negative CA: ampicillin 96% (290/301); ciprofloxacin 95% (283/297); ceftriaxone 96% (75/78); meropenem 97% (288/297); piperacillin-tazobactam 95% (280/295); gentamicin 94% (279/297) and amikacin 93% (277/298). The median time to susceptibility results from blood culture flagging positive was 6.3 h vs 20 h (p < 0.01) for Alfred system vs BD Phoenix™. CONCLUSION: Alfred 60 AST system greatly reduced time to antimicrobial susceptibility results in Gram-negative and Gram-positive BSIs with good performance and cost, particularly for Gram-negative bacteraemia

    Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation

    Get PDF
    Domestication and selective breeding has resulted in over 1000 extant cattle breeds. Many of these breeds do not excel in important traits but are adapted to local environments. These adaptations are a valuable source of genetic material for efforts to improve commercial breeds. As a step toward this goal we identified candidate regions to be under selection in genomes of nine Russian native cattle breeds adapted to survive in harsh climates. After comparing our data to other breeds of European and Asian origins we found known and novel candidate genes that could potentially be related to domestication, economically important traits and environmental adaptations in cattle. The Russian cattle breed genomes contained regions under putative selection with genes that may be related to adaptations to harsh environments (e.g., AQP5, RAD50, and RETREG1). We found genomic signatures of selective sweeps near key genes related to economically important traits, such as the milk production (e.g., DGAT1, ABCG2), growth (e.g., XKR4), and reproduction (e.g., CSF2). Our data point to candidate genes which should be included in future studies attempting to identify genes to improve the extant breeds and facilitate generation of commercial breeds that fit better into the environments of Russia and other countries with similar climates
    • …
    corecore