199 research outputs found
A finite element model using a unified formulation for the analysis of viscoelastic sandwich laminates
In this paper we present a layerwise finite element model for the analysis of sandwich laminated plates with a viscoelastic core and laminated anisotropic face layers. The stiffness and mass matrices of the element are obtained by Carrera's Unified Formulation (CUF). The dynamic problem is solved in the frequency domain with viscoelastic frequency-dependent material properties for the core. The dynamic behaviour of the model is compared with solutions found in the literature, including experimental data
Field notes on the breeding biology and diet of ferruginous pygmy-owl (Glaucidium brasilianum) in the dry chaco of Argentina
Fil:Fernández, F.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Analysis of composite plates through cell-based smoothed finite element and 4-noded mixed interpolation of tensorial components techniques
The static bending and the free vibration analysis of composite plates are performed with Carrera's Unified Formulation (CUF). We combine the cell-based smoothed finite element method (CSFEM) and the 4-noded mixed interpolation of tensorial components approach (MITC4). The smoothing method is used for the approximation of the bending strains, whilst the mixed interpolation allows the calculation of the shear transverse stress in a different manner. With a few numerical examples, the accuracy and the efficiency of the approach is demonstrated. The insensitiveness to shear locking is also demonstrated. © 2014 Elsevier Ltd. All rights reserved
Distribution of non-AT(1), non-AT(2) binding of (125)I-Sarcosine(1), Isoleucine(8) angiotensin II in neurolysin knockout mouse brains
The recent identification of a novel binding site for angiotensin (Ang) II as the peptidase neurolysin (E.C. 3.4.24.16) has implications for the renin-angiotensin system (RAS). This report describes the distribution of specific binding of 125I-Sarcosine1, Isoleucine8 Ang II (125I-SI Ang II) in neurolysin knockout mouse brains compared to wild-type mouse brains using quantitative receptor autoradiography. In the presence of p-chloromercuribenzoic acid (PCMB), which unmasks the novel binding site, widespread distribution of specific (3 microM Ang II displaceable) 125I-SI Ang II binding in 32 mouse brain regions was observed. Highest levels of binding >700 fmol/g initial wet weight were seen in hypothalamic, thalamic and septal regions, while the lowest level of binding <300 fmol/g initial wet weight was in the mediolateral medulla. 125I-SI Ang II binding was substantially higher by an average of 85% in wild-type mouse brains compared to neurolysin knockout brains, suggesting the presence of an additional non-AT1, non-AT2, non-neurolysin Ang II binding site in the mouse brain. Binding of 125I-SI Ang II to neurolysin in the presence of PCMB was highest in hypothalamic and ventral cortical brain regions, but broadly distributed across all regions surveyed. Non-AT1, non-AT2, non-neurolysin binding was also highest in the hypothalamus but had a different distribution than neurolysin. There was a significant reduction in AT2 receptor binding in the neurolysin knockout brain and a trend towards decreased AT1 receptor binding. In the neurolysin knockout brains, the size of the lateral ventricles was increased by 56% and the size of the mid forebrain (-2.72 to +1.48 relative to Bregma) was increased by 12%. These results confirm the identity of neurolysin as a novel Ang II binding site, suggesting that neurolysin may play a significant role in opposing the pathophysiological actions of the brain RAS and influencing brain morphology
Application of Time Transfer Function to McVittie Spacetime: Gravitational Time Delay and Secular Increase in Astronomical Unit
We attempt to calculate the gravitational time delay in a time-dependent
gravitational field, especially in McVittie spacetime, which can be considered
as the spacetime around a gravitating body such as the Sun, embedded in the
FLRW (Friedmann-Lema\^itre-Robertson-Walker) cosmological background metric. To
this end, we adopt the time transfer function method proposed by Le
Poncin-Lafitte {\it et al.} (Class. Quant. Grav. 21:4463, 2004) and Teyssandier
and Le Poncin-Lafitte (Class. Quant. Grav. 25:145020, 2008), which is
originally related to Synge's world function and enables to
circumvent the integration of the null geodesic equation. We re-examine the
global cosmological effect on light propagation in the solar system. The
round-trip time of a light ray/signal is given by the functions of not only the
spacial coordinates but also the emission time or reception time of light
ray/signal, which characterize the time-dependency of solutions. We also apply
the obtained results to the secular increase in the astronomical unit, reported
by Krasinsky and Brumberg (Celest. Mech. Dyn. Astron. 90:267, 2004), and we
show that the leading order terms of the time-dependent component due to
cosmological expansion is 9 orders of magnitude smaller than the observed value
of , i.e., ~[m/century]. Therefore, it is not possible
to explain the secular increase in the astronomical unit in terms of
cosmological expansion.Comment: 13 pages, 2 figures, accepted for publication in General Relativity
and Gravitatio
Search for single top quarks in the tau+jets channel using 4.8 fb of collision data
We present the first direct search for single top quark production using tau
leptons. The search is based on 4.8 fb of integrated luminosity
collected in collisions at =1.96 TeV with the D0 detector
at the Fermilab Tevatron Collider. We select events with a final state
including an isolated tau lepton, missing transverse energy, two or three jets,
one or two of them tagged. We use a multivariate technique to discriminate
signal from background. The number of events observed in data in this final
state is consistent with the signal plus background expectation. We set in the
tau+jets channel an upper limit on the single top quark cross section of
\TauLimObs pb at the 95% C.L. This measurement allows a gain of 4% in expected
sensitivity for the observation of single top production when combining it with
electron+jets and muon+jets channels already published by the D0 collaboration
with 2.3 fb of data. We measure a combined cross section of
\SuperCombineXSall pb, which is the most precise measurement to date.Comment: 12 pages, 5 figure
b-Jet Identification in the D0 Experiment
Algorithms distinguishing jets originating from b quarks from other jet
flavors are important tools in the physics program of the D0 experiment at the
Fermilab Tevatron p-pbar collider. This article describes the methods that have
been used to identify b-quark jets, exploiting in particular the long lifetimes
of b-flavored hadrons, and the calibration of the performance of these
algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research
Measurement of the dijet invariant mass cross section in proton anti-proton collisions at sqrt{s} = 1.96 TeV
The inclusive dijet production double differential cross section as a
function of the dijet invariant mass and of the largest absolute rapidity of
the two jets with the largest transverse momentum in an event is measured in
proton anti-proton collisions at sqrt{s} = 1.96 TeV using 0.7 fb^{-1}
integrated luminosity collected with the D0 detector at the Fermilab Tevatron
Collider. The measurement is performed in six rapidity regions up to a maximum
rapidity of 2.4. Next-to-leading order perturbative QCD predictions are found
to be in agreement with the data.Comment: Published in Phys. Lett. B, 693, (2010), 531-538, 8 pages, 2 figures,
6 table
- …