8 research outputs found

    Biologics for Targeting Inflammatory Cytokines, Clinical Uses, and Limitations

    Get PDF
    Proinflammatory cytokines are potent mediators of numerous biological processes and are tightly regulated in the body. Chronic uncontrolled levels of such cytokines can initiate and derive many pathologies, including incidences of autoimmunity and cancer. Therefore, therapies that regulate the activity of inflammatory cytokines, either by supplementation of anti-inflammatory recombinant cytokines or by neutralizing them by using blocking antibodies, have been extensively used over the past decades. Over the past few years, new innovative biological agents for blocking and regulating cytokine activities have emerged. Here, we review some of the most recent approaches of cytokine targeting, focusing on anti-TNF antibodies or recombinant TNF decoy receptor, recombinant IL-1 receptor antagonist (IL-1Ra) and anti-IL-1 antibodies, anti-IL-6 receptor antibodies, and TH17 targeting antibodies. We discuss their effects as biologic drugs, as evaluated in numerous clinical trials, and highlight their therapeutic potential as well as emphasize their inherent limitations and clinical risks. We suggest that while systemic blocking of proinflammatory cytokines using biological agents can ameliorate disease pathogenesis and progression, it may also abrogate the hosts defense against infections. Moreover, we outline the rational need to develop new therapies, which block inflammatory cytokines only at sites of inflammation, while enabling their function systemically

    Biologics for Targeting Inflammatory Cytokines, Clinical Uses, and Limitations

    Get PDF
    Proinflammatory cytokines are potent mediators of numerous biological processes and are tightly regulated in the body. Chronic uncontrolled levels of such cytokines can initiate and derive many pathologies, including incidences of autoimmunity and cancer. Therefore, therapies that regulate the activity of inflammatory cytokines, either by supplementation of anti-inflammatory recombinant cytokines or by neutralizing them by using blocking antibodies, have been extensively used over the past decades. Over the past few years, new innovative biological agents for blocking and regulating cytokine activities have emerged. Here, we review some of the most recent approaches of cytokine targeting, focusing on anti-TNF antibodies or recombinant TNF decoy receptor, recombinant IL-1 receptor antagonist (IL-1Ra) and anti-IL-1 antibodies, anti-IL-6 receptor antibodies, and TH17 targeting antibodies. We discuss their effects as biologic drugs, as evaluated in numerous clinical trials, and highlight their therapeutic potential as well as emphasize their inherent limitations and clinical risks. We suggest that while systemic blocking of proinflammatory cytokines using biological agents can ameliorate disease pathogenesis and progression, it may also abrogate the hosts defense against infections. Moreover, we outline the rational need to develop new therapies, which block inflammatory cytokines only at sites of inflammation, while enabling their function systemically

    CD44 Expression Intensity Marks Colorectal Cancer Cell Subpopulations with Different Extracellular Vesicle Release Capacity

    Get PDF
    Extracellular vesicles (EV) are released by virtually all cells and they transport biologically important molecules from the release site to target cells. Colorectal cancer (CRC) is a leading cause of cancer-related death cases, thus, it represents a major health issue. Although the EV cargo may reflect the molecular composition of the releasing cells and thus, EVs may hold a great promise for tumor diagnostics, the impact of intratumoral heterogeneity on the intensity of EV release is still largely unknown. By using CRC patient-derived organoids that maintain the cellular and molecular heterogeneity of the original epithelial tumor tissue, we proved that CD44(high) cells produce more organoids with a higher proliferation intensity, as compared to CD44(low) cells. Interestingly, we detected an increased EV release by CD44(high) CRC cells. In addition, we found that the miRNA cargos of CD44(high) and CD44(low) cell derived EVs largely overlapped and only four miRNAs were specific for one of the above subpopulations. We observed that EVs released by CD44(high) cells induced the proliferation and activation of colon fibroblasts more strongly than CD44(low) cells. However, this effect was due to the higher EV number rather than to the miRNA cargo of EVs. Collectively, we identified CRC subpopulations with different EV releasing capabilities and we proved that CRC cell-released EVs have a miRNA-independent effect on fibroblast proliferation and activation

    Insect Pest Pheromone Lures May Enhance the Activity of Insectivorous Bats in Mediterranean Vineyards and Apple Orchards

    No full text
    Insectivorous bats may play a significant role in regulating populations of agricultural pests. Currently, few methods are available to enhance the activity of bats in agroecosystems. We asked whether synthetic sex pheromones, used in integrated pest management (IPM) to impede the mating success of major moth pests in vineyards and apple orchards, could also enhance the activity and richness of insectivorous bats, their natural enemies. We hypothesized that applying concentrated sex pheromones of pest moths will alter the movement patterns of male moths, indirectly affecting bat richness and activity. We compared the effect of sex pheromones on bats under two different agricultural management systems: conventional farming and IPM. We used synthetic sex pheromones of Lobesia botrana or Cydia pomonella; both are among the most destructive moth pests in vineyards and apple orchards, respectively. Using passive acoustic monitoring, we compared species richness and bat activity in plots without and with additional pheromones. In both IPM vineyards and IPM apple orchards, total bat activity and species richness significantly increased after applying the pheromone treatment, with a positive correlation between total bat activity and the numbers of moth pests in the vineyards. In conventional vineyards, bat species richness increased significantly, but not total bat activity. IPM vineyards had significantly higher species richness than conventional vineyards, both before and after the pheromone treatment. Our study shows that moth pheromone lures, commonly used as a pest control method, may also attract insectivorous bats, which in turn may further suppress the pests. These findings highlight the potential of insectivorous bats as pest control agents and call for further research directed at integrating them in IPM practices

    IL-1alpha and IL-1beta recruit different myeloid cells and promote different stages of sterile inflammation.

    No full text
    Item does not contain fulltextThe immune system has evolved to protect the host from invading pathogens and to maintain tissue homeostasis. Although the inflammatory process involving pathogens is well documented, the intrinsic compounds that initiate sterile inflammation and how its progression is mediated are still not clear. Because tissue injury is usually associated with ischemia and the accompanied hypoxia, the microenvironment of various pathologies involves anaerobic metabolites and products of necrotic cells. In the current study, we assessed in a comparative manner the role of IL-1alpha and IL-1beta in the initiation and propagation of sterile inflammation induced by products of hypoxic cells. We found that following hypoxia, the precursor form of IL-1alpha, and not IL-1beta, is upregulated and subsequently released from dying cells. Using an inflammation-monitoring system consisting of Matrigel mixed with supernatants of hypoxic cells, we noted accumulation of IL-1alpha in the initial phase, which correlated with the infiltration of neutrophils, and the expression of IL-1beta correlated with later migration of macrophages. In addition, we were able to show that IL-1 molecules from cells transfected with either precursor IL-1alpha or mature IL-1beta can recruit neutrophils or macrophages, respectively. Taken together, these data suggest that IL-1alpha, released from dying cells, initiates sterile inflammation by inducing recruitment of neutrophils, whereas IL-1beta promotes the recruitment and retention of macrophages. Overall, our data provide new insight into the biology of IL-1 molecules as well as on the regulation of sterile inflammation

    MEK1/2 inhibition transiently alters the tumor immune microenvironment to enhance immunotherapy efficacy against head and neck cancer

    No full text
    Background Although the mitogen-activated protein kinases (MAPK) pathway is hyperactive in head and neck cancer (HNC), inhibition of MEK1/2 in HNC patients has not shown clinically meaningful activity. Therefore, we aimed to characterize the effect of MEK1/2 inhibition on the tumor microenvironment (TME) of MAPK-driven HNC, elucidate tumor-host interaction mechanisms facilitating immune escape on treatment, and apply rationale-based therapy combination immunotherapy and MEK1/2 inhibitor to induce tumor clearance.Methods Mouse syngeneic tumors and xenografts experiments were used to analyze tumor growth in vivo. Single-cell cytometry by time of flight, flow cytometry, and tissue stainings were used to profile the TME in response to trametinib (MEK1/2 inhibitor). Co-culture of myeloid-derived suppressor cells (MDSC) with CD8+ T cells was used to measure immune suppression. Overexpression of colony-stimulating factor-1 (CSF-1) in tumor cells was used to show the effect of tumor-derived CSF-1 on sensitivity to trametinib and anti-programmed death- 1 (αPD-1) in mice. In HNC patients, the ratio between CSF-1 and CD8A was measured to test the association with clinical benefit to αPD-1 and αPD-L1 treatment.Results Using preclinical HNC models, we demonstrated that treatment with trametinib delays HNC initiation and progression by reducing tumor cell proliferation and enhancing the antitumor immunity of CD8+ T cells. Activation of CD8+ T cells by supplementation with αPD-1 antibody eliminated tumors and induced an immune memory in the cured mice. Mechanistically, an early response to trametinib treatment sensitized tumors to αPD-1-supplementation by attenuating the expression of tumor-derived CSF-1, which reduced the abundance of two CSF-1R+CD11c+ MDSC populations in the TME. In contrast, prolonged treatment with trametinib abolished the antitumor activity of αPD-1, because tumor cells undergoing the epithelial to mesenchymal transition in response to trametinib restored CSF-1 expression and recreated an immune-suppressive TME.Conclusion Our findings provide the rationale for testing the trametinib/αPD-1 combination in HNC and highlight the importance of sensitizing tumors to αPD-1 by using MEK1/2 to interfere with the tumor–host interaction. Moreover, we describe the concept that treatment of cancer with a targeted therapy transiently induces an immune-active microenvironment, and supplementation of immunotherapy during this time further activates the antitumor machinery to cause tumor elimination

    Function and regulation of IL-1α in inflammatory diseases and cancer

    No full text
    corecore