234 research outputs found

    Papel de las catecolaminas cerebrales, adrenomedulares y hormonas adrenocorticales en los efectos que acompañan a la administración aguda y crónica de morfina

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Biológicas, leída en 1977.Fac. de Ciencias BiológicasTRUEProQuestpu

    Regional and temporal modulation of brain glycoprotein synthesis by corticosterone

    Full text link

    A Cannabigerol Derivative Suppresses Immune Responses and Protects Mice from Experimental Autoimmune Encephalomyelitis

    Get PDF
    Phytocannabinoids that do not produce psychotropic effects are considered of special interest as novel therapeutic agents in CNS diseases. A cannabigerol quinone, the compound VCE-003, has been shown to alleviate symptoms in a viral model of multiple sclerosis (MS). Hence, we studied T cells and macrophages as targets for VCE-003 and its efficacy in an autoimmune model of MS. Proliferation, cell cycle, expression of activation markers was assessed by FACs in human primary T cells, and cytokine and chemokine production was evaluated. Transcription was studied in Jurkat cells and RAW264.7 cells were used to study the effects of VCE-003 on IL-17-induced macrophage polarization to a M1 phenotype. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG35–55) immunization and spinal cord pathology was assessed by immunohistochemistry. Neurological impairment was evaluated using disease scores. We show here that VCE-003 inhibits CD3/CD28-induced proliferation, cell cycle progression and the expression of the IL-2Rα and ICAM-1 activation markers in human primary T cells. VCE-003 inhibits the secretion of Th1/Th17 cytokines and chemokines in primary murine T cells, and it reduces the transcriptional activity of the IL-2, IL-17 and TNFα promoters induced by CD3/CD28. In addition, VCE-003 and JWH-133, a selective CB2 agonist, dampened the IL-17-induced polarization of macrophages to a pro-inflammatory M1 profile. VCE-003 also prevented LPS-induced iNOS expression in microglia. VCE-003 ameliorates the neurological defects and the severity of MOG-induced EAE in mice through CB2 and PPARγ receptor activation. A reduction in cell infiltrates, mainly CD4+ T cells, was observed, and Th1 and Th17 responses were inhibited in the spinal cord of VCE-003-treated mice, accompanied by weaker microglial activation, structural preservation of myelin sheets and reduced axonal damage. This study highlights the therapeutic potential of VCE-003 as an agent for the treatment of human immune diseases with both inflammatory and autoimmune components

    Anandamide inhibits Theiler's virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB1 receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>VCAM-1 represents one of the most important adhesion molecule involved in the transmigration of blood leukocytes across the blood-brain barrier (BBB) that is an essential step in the pathogenesis of MS. Several evidences have suggested the potential therapeutic value of cannabinoids (CBs) in the treatment of MS and their experimental models. However, the effects of endocannabinoids on VCAM-1 regulation are poorly understood. In the present study we investigated the effects of anandamide (AEA) in the regulation of VCAM-1 expression induced by Theiler's virus (TMEV) infection of brain endothelial cells using <it>in vitro </it>and <it>in vivo </it>approaches.</p> <p>Methods</p> <p>i) <it>in vitro</it>: VCAM-1 was measured by ELISA in supernatants of brain endothelial cells infected with TMEV and subjected to AEA and/or cannabinoid receptors antagonist treatment. To evaluate the functional effect of VCAM-1 modulation we developed a blood brain barrier model based on a system of astrocytes and brain endothelial cells co-culture. ii) <it>in vivo</it>: CB<sub>1 </sub>receptor deficient mice (Cnr1<sup>-/-</sup>) infected with TMEV were treated with the AEA uptake inhibitor UCM-707 for three days. VCAM-1 expression and microglial reactivity were evaluated by immunohistochemistry.</p> <p>Results</p> <p>Anandamide-induced inhibition of VCAM-1 expression in brain endothelial cell cultures was mediated by activation of CB<sub>1 </sub>receptors. The study of leukocyte transmigration confirmed the functional relevance of VCAM-1 inhibition by AEA. <it>In vivo </it>approaches also showed that the inhibition of AEA uptake reduced the expression of brain VCAM-1 in response to TMEV infection. Although a decreased expression of VCAM-1 by UCM-707 was observed in both, wild type and CB<sub>1 </sub>receptor deficient mice (Cnr1<sup>-/-</sup>), the magnitude of VCAM-1 inhibition was significantly higher in the wild type mice. Interestingly, Cnr1<sup>-/- </sup>mice showed enhanced microglial reactivity and VCAM-1 expression following TMEV infection, indicating that the lack of CB<sub>1 </sub>receptor exacerbated neuroinflammation.</p> <p>Conclusions</p> <p>Our results suggest that CB<sub>1 </sub>receptor dependent VCAM-1 inhibition is a novel mechanism for AEA-reduced leukocyte transmigration and contribute to a better understanding of the mechanisms underlying the beneficial role of endocannabinoid system in the Theiler's virus model of MS.</p

    Brain innate immunity in the regulation of neuroinflammation: therapeutic strategies by modulating cd200-cd200r interaction involve the cannabinoid system

    Get PDF
    The central nervous system (CNS) innate immune response includes an arsenal of molecules and receptors expressed by professional phagocytes, glial cells and neurons that is involved in host defence and clearance of toxic and dangerous cell debris. However, any uncontrolled innate immune responses within the CNS are widely recognized as playing a major role in the development of autoimmune disorders and neurodegeneration, with multiple sclerosis (MS) and Alzheimer´s disease (AD) being primary examples. Hence, it is important to identify the key regulatory mechanisms involved in the control of CNS innate immunity and which could be harnessed to explore novel therapeutic avenues. Neuroimmune regulatory proteins (NIReg) such as CD95L, CD200, CD47, sialic acid, complement regulatory proteins (CD55, CD46, fH, C3a), HMGB1, may control the adverse immune responses in health and diseases. In the absence of these regulators, when neurons die by apoptosis, become infected or damaged, microglia and infiltrating immune cells are free to cause injury as well as an adverse inflammatory response in acute and chronic settings. We will herein provide new emphasis on the role of the pair CD200-CD200R in MS and its experimental models: experimental autoimmune encephalomyelitis (EAE) and Theiler?s virus induced demyelinating disease (TMEV-IDD). The interest of the cannabinoid system as inhibitor of inflammation prompt us to introduce our findings about the role of endocannabinoids (eCBs) in promoting CD200-CD200 receptor (CD200R) interaction and the benefits caused in TMEV-IDD. Finally, we also review the current data on CD200-CD200R interaction in AD, as well as, in the aging brain.Fil: Hernangómez, Miriam. Consejo Superior de Investigaciones Cientificas; EspañaFil: Carrillo Salinas, Francisco. Consejo Superior de Investigaciones Cientificas; EspañaFil: Mecha, Miriam. Consejo Superior de Investigaciones Cientificas; EspañaFil: Correa, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Mestre, Leyre. Consejo Superior de Investigaciones Cientificas; EspañaFil: Loría, Frida. Consejo Superior de Investigaciones Cientificas; EspañaFil: Feliú, Ana. Consejo Superior de Investigaciones Cientificas; EspañaFil: Docagne, Fabian. Inserm; FranciaFil: Guaza, Carmen. Consejo Superior de Investigaciones Cientificas; Españ

    How oral probiotics affect the severity of an experimental model of progressive multiple sclerosis? Bringing commensal bacteria into the neurodegenerative process

    Get PDF
    A growing number of studies support that the bidirectional interactions between the gut microbiota, the immune system and the CNS are relevant for the pathophysiology of MS. Several studies have reported alterations in the gut microbiome of MS patients. In addition, a variety of studies in animal models of MS have suggested that specific members of the gut commensal microbiota can exacerbate or ameliorate neuroinflammation. Probiotics represent oral nontoxic immunomodulatory agents that would exert benefits when using in combination with current MS therapy. Here we investigate the effect of Vivomixx on the gut microbiome and central and peripheral immune responses in a murine model of primary progressive MS. Vivomixx administration was associated with increased abundance of many taxa such as Bacteroidetes, Actinobacteria, Tenericutes and TM7. This was accompanied by a clear improvement of the motor disability of Theiler's virus infected mice; in the CNS Vivomixx reduced microgliosis, astrogliosis and leukocyte infiltration. Notably, the presence of Breg cells (CD19 + CD5 + CD1d high) in the CNS was enhanced by Vivomixx, and while spinal cord gene expression of IL-1β and IL-6 was diminished, the probiotic promoted IL-10 gene expression. One of the most significant findings was the increased plasma levels of butyrate and acetate levels in TMEV-mice that received Vivomixx. Peripheral immunological changes were subtle but interestingly, the probiotic restricted IL-17 production by Th17-polarized CD4 + T-cells purified from the mesenteric lymph nodes of Theiler's virus infected mice. Our data reinforce the beneficial effects of oral probiotics that would be coadjuvant treatments to current MS therapies

    Regulatory Lymphocytes Are Key Factors in MHC-Independent Resistance to EAE

    Get PDF
    Background and Objectives. Resistant and susceptible mouse strains to experimental autoimmune encephalomyelitis (EAE), an inducible demyelinating experimental disease serving as animal model for multiple sclerosis, have been described. We aimed to explore MHC-independent mechanisms inducing resistance to EAE. Methods. For EAE induction, female C57BL/6 (susceptible strain) and CD1 (resistant outbred strain showing heterogeneous MHC antigens) mice were immunized with the 35–55 peptide of myelin oligodendrocyte glycoprotein (MOG35−55). We studied T cell proliferation, regulatory and effector cell subpopulations, intracellular and serum cytokine patterns, and titers of anti-MOG serum antibodies. Results. Upon immunization with MOG35−55, T lymphocytes from susceptible mice but not that of resistant strain were capable of proliferating when stimulated with MOG35−55. Accordingly, resistant mice experienced a rise in regulatory B cells (P=0.001) and, to a lower extent, in regulatory T cells (P=0.02) compared with C57BL/6 susceptible mice. As a consequence, MOG35−55-immunized C57BL/6 mice showed higher percentages of CD4+ T cells producing both IFN-gamma (P=0.02) and IL-17 (P=0.009) and higher serum levels of IL-17 (P=0.04) than resistant mice. Conclusions. Expansion of regulatory B and T cells contributes to the induction of resistance to EAE by an MHC-independent mechanism

    Tissue plasminogen activator prevents white matter damage following stroke

    Get PDF
    Tissue plasminogen activator protects white matter from stroke-induced lesions via the EGF-like domain and independent of proteolytic activity by promoting oligodendrocyte survival
    corecore